Gold nanorods: Their potential for photothermal therapeutics and drug delivery, tempered by the complexity of their biological interactions
Tài liệu tham khảo
Farrell, 2010, Recent advances from the National Cancer Institute Alliance for Nanotechnology in cancer, ACS Nano, 4, 589, 10.1021/nn100073g
Ferrari, 2005, Cancer nanotechnology: opportunities and challenges, Nat. Rev. Cancer, 5, 161, 10.1038/nrc1566
Rosi, 2005, Nanostructures in biodiagnostics, Chem. Rev., 105, 1547, 10.1021/cr030067f
Gunasekera, 2009, Imaging applications of nanotechnology in cancer, Target. Oncol., 4, 169, 10.1007/s11523-009-0118-9
Nel, 2009, Understanding biophysicochemical interactions at the nano-bio interface, Nat. Mater., 8, 543, 10.1038/nmat2442
Iyer, 2006, Exploiting the enhanced permeability and retention effect for tumor targeting, Drug Discov. Today, 11, 812, 10.1016/j.drudis.2006.07.005
Ghosh, 2008, Gold nanoparticles in delivery applications, Adv. Drug Deliv. Rev., 60, 1307, 10.1016/j.addr.2008.03.016
Faraji, 2009, Nanoparticles in cellular drug delivery, Bioorg. Med. Chem., 17, 2950, 10.1016/j.bmc.2009.02.043
Veiseh, 2010, Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging, Adv. Drug Deliv. Rev., 62, 284, 10.1016/j.addr.2009.11.002
Husseini, 2008, Micelles and nanoparticles for ultrasonic drug and gene delivery, Adv. Drug Deliv. Rev., 60, 1137, 10.1016/j.addr.2008.03.008
Liu, 2008, Polysaccharides-based nanoparticles as drug delivery systems, Adv. Drug Deliv. Rev., 60, 1650, 10.1016/j.addr.2008.09.001
Almelda, 2007, Solid lipid nanoparticles as a drug delivery system for peptides and proteins, Adv. Drug Deliv. Rev., 59, 478, 10.1016/j.addr.2007.04.007
Sinha, 2006, Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery, Mol. Cancer Ther., 5, 1909, 10.1158/1535-7163.MCT-06-0141
Panyam, 2003, Biodegradable nanoparticles for drug and gene delivery to cells and tissue, Adv. Drug Deliv. Rev., 55, 329, 10.1016/S0169-409X(02)00228-4
Murphy, 2008, Gold nanoparticles in biology: beyond toxicity to cellular imaging, Acc. Chem. Res., 41, 1721, 10.1021/ar800035u
Murphy, 2008, Chemical sensing and imaging with metallic nanorods, Chem. Commun., 544, 10.1039/B711069C
Murphy, 2005, Anisotropic metal nanoparticles: synthesis, assembly, and optical applications, J. Phys. Chem. B, 109, 13857, 10.1021/jp0516846
Murphy, 2005, Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures, MRS Bull., 30, 349, 10.1557/mrs2005.97
El-Sayed, 2001, Some interesting properties of metals confined in time and nanometer space of different shapes, Acc. Chem. Res., 34, 257, 10.1021/ar960016n
Huang, 2008, Plasmonic photothermal therapy (PPTT) using gold nanoparticles, Lasers Med. Sci., 23, 217, 10.1007/s10103-007-0470-x
Daniel, 2004, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 104, 293, 10.1021/cr030698+
Jain, 2008, Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, Sens. Biol. Med. Acc. Chem. Res., 41, 1578, 10.1021/ar7002804
Kelly, 2003, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment, J. Phys. Chem. B, 107, 668, 10.1021/jp026731y
Bhattacharya, 2008, Biological properties of ‘naked’ metal nanoparticles, Adv. Drug Deliv. Rev., 60, 1289, 10.1016/j.addr.2008.03.013
Aillon, 2009, Effects of nanomaterial physiochemical properties on in vivo toxicity, Adv. Drug Deliv. Rev., 61, 457, 10.1016/j.addr.2009.03.010
Patra, 2010, Fabrication of gold nanoparticles for targeted therapy in pancreatic cancer, Adv. Drug Deliv. Rev., 62, 346, 10.1016/j.addr.2009.11.007
Fadeel, 2010, Better safe than sorry: understanding the toxicological properties of inorganic nanoparticles manufactured for biomedical applications, Adv. Drug Deliv. Rev., 62, 362, 10.1016/j.addr.2009.11.008
Xie, 2010, Nanoparticle-based theranostic agents, Adv. Drug Deliv. Rev., 62, 1064, 10.1016/j.addr.2010.07.009
Huang, 2009, Gold nanorods: from synthesis and properties to biological and biomedical applications, Adv. Mater., 21, 4880, 10.1002/adma.200802789
Orendorff, 2006, Quantitation of metal content in the silver-assisted growth of gold nanorods, J. Phys. Chem. B, 110, 3990, 10.1021/jp0570972
Loo, 2005, Immunotargeted nanoshells for integrated cancer imaging and therapy, Nano Lett., 5, 709, 10.1021/nl050127s
Chen, 2007, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 7, 1318, 10.1021/nl070345g
Chen, 2008, Shape- and size-dependent refractive index sensitivity of gold nanoparticles, Langmuir, 24, 5233, 10.1021/la800305j
Eghtedari, 2007, High sensitivity of in vivo detection of gold nanorods using a laser optoacoustic imaging system, Nano Lett., 7, 1914, 10.1021/nl070557d
El-Sayed, 2005, Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer, Nano Lett., 5, 829, 10.1021/nl050074e
Stone, 2007, Using gold nanorods to probe cell-induced collagen deformation, Nano Lett., 7, 116, 10.1021/nl062248d
Haynes, 2005, Surface-enhanced Raman spectroscopy, Anal. Chem., 77, 338A, 10.1021/ac053456d
Anker, 2008, Biosensing with plasmonic nanosensors, Nat. Mater., 7, 442, 10.1038/nmat2162
Willets, 2007, Localized surface plasmon resonance spectroscopy and sensing, Annu. Rev. Phys. Chem., 58, 267, 10.1146/annurev.physchem.58.032806.104607
Orendorff, 2005, Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence, Anal. Chem., 77, 3261, 10.1021/ac048176x
Orendorff, 2006, Aspect ratio depdence on surface-enhanced Raman scattering using silver and gold nanorod substrates, Phys. Chem. Chem. Phys., 8, 165, 10.1039/B512573A
Strickland, 2009, Detection of carbendazim by surface-enhanced Raman scattering using cyclodextrin inclusion complexes on gold nanorods, Anal. Chem., 81, 2895, 10.1021/ac801626x
von Maltzahn, 2009, SERS-coded gold nanorods as a multifunctional platform for densely multiplexed near-infrared imaging and photothermal heating, Adv. Mater., 21, 3175, 10.1002/adma.200803464
Zharov, 2006, Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanorods, Biophys. J., 90, 619, 10.1529/biophysj.105.061895
Pissuwon, 2007, Targeted destruction of murine macrophage cells with bioconjugated gold nanorods, J. Nanopart. Res., 9, 1109, 10.1007/s11051-007-9212-z
Norman, 2008, Targeted photothermal lysis of the pathogenic bacteria, Pseudomonas aeruginosa, with gold nanorods, Nano Lett., 8, 302, 10.1021/nl0727056
Dickerson, 2008, Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice, Cancer Lett., 269, 57, 10.1016/j.canlet.2008.04.026
von Maltzahn, 2009, Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas, Cancer Res., 69, 3892, 10.1158/0008-5472.CAN-08-4242
Perez-Juste, 2005, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev., 249, 1870, 10.1016/j.ccr.2005.01.030
Sau, 2004, Seeded high yield synthesis of short Au nanorods in aqueous solution, Langmuir, 20, 6414, 10.1021/la049463z
Murphy, 2010, The many faces of gold nanorods, J. Phys. Chem. Lett., 1, 2867, 10.1021/jz100992x
Gole, 2005, Polyelectrolyte-coated gold nanorods: synthesis, characterization and immobilization, Chem. Mater., 17, 1325, 10.1021/cm048297d
Gole, 2008, Azide-derivatized gold nanorods: functional materials for “click” chemistry, Langmuir, 24, 266, 10.1021/la7026303
Orendorff, 2009, Phospholipid-gold nanorod conjugates, ACS Nano, 3, 971, 10.1021/nn900037k
Alkilany, 2010, Cation exchange on the surface of gold nanorods with a polymerizable surfactant: polymerization, stability, and toxicity evaluation, Langmuir, 26, 9328, 10.1021/la100253k
Liao, 2005, Gold nanorod bioconjugates, Chem. Mater., 17, 4636, 10.1021/cm050935k
Kumar, 2008, Directional conjugation of antibodies to nanoparticles for synthesis of multiplexed optical contrast agents with both delivery and targeting moieties, Nat. Protoc., 3, 314, 10.1038/nprot.2008.1
Chen, 2006, DNA-gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation, J. Am. Chem. Soc., 128, 3709, 10.1021/ja0570180
Sendroiu, 2009, Fabrication of silica-coated gold nanorods functionalized with DNA for enhanced surface plasmon resonance imaging biosensing applications, Langmuir, 25, 11282, 10.1021/la902675s
Alkilany, 2010, Toxicity and cellular uptake of gold nanoparticles: what we have learned so far?, J. Nanopart. Res., 12, 2313, 10.1007/s11051-010-9911-8
Huang, 2006, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 128, 2115, 10.1021/ja057254a
Kim, 2009, Entrapment of hydrophobic drugs in nanoparticle monolayers with efficient release into cancer cells, J. Am. Chem. Soc., 131, 1360, 10.1021/ja808137c
Alkilany, 2008, Gold nanorods as nanoadmicelles: 1-naphthol partitioning into a nanorod-bound surfactant bilayer, Langmuir, 24, 10235, 10.1021/la8018343
Alper, 2009, Release mechanism of octadecyl rhodamine B chloride from Au nanorods by ultrafast laser pulses, J. Phys. Chem. C, 113, 5967, 10.1021/jp809646e
Wijaya, 2009, Selective release of multiple DNA oligonucleotides from gold nanorods, ACS Nano, 3, 80, 10.1021/nn800702n
Takahashi, 2005, Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light, Chem. Commun., 2247, 10.1039/b500337g
Huang, 2009, Simultaneous enhancement of photothermal stability and gene delivery efficacy of gold nanorods using polyelectrolytes, ACS Nano, 3, 2941, 10.1021/nn900947a
Lee, 2009, Biologically functional cationic phospholipid-gold nanoplasmonic carriers of RNA, J. Am. Chem. Soc., 131, 14066, 10.1021/ja904326j
Bonoiu, 2009, Nanotechnology approach for drug addiction therapy: gene silencing using delivery of gold nanorod-siRNA nanoplex in dopaminergic neurons, Proc. Natl Acad. Sci. U. S. A., 106, 5546, 10.1073/pnas.0901715106
Chakravarthy, 2010, Gold nanorod delivery of an ssRNA immune activator inhibits pandemic H1N1 influenza viral replication, Proc. Natl Acad. Sci. U. S. A., 107, 10172, 10.1073/pnas.0914561107
Alkilany, 2009, Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects, Small, 5, 701, 10.1002/smll.200801546
Kawano, 2009, PNIPAM gel-coated gold nanorods, for targeted delivery responding to a near-infrared laser, Bioconjug. Chem., 20, 209, 10.1021/bc800480k
Hauck, 2008, Enhancing the toxicity of cancer chemotherapeutics with gold nanorod hyperthermia, Adv. Mater., 20, 3832, 10.1002/adma.200800921
Moshfeghi, 2005, Micro- and nanoparticulates, Adv. Drug Deliv. Rev., 57, 2047, 10.1016/j.addr.2005.09.006
Guo, 2003, Chemical approaches to triggerable lipid vesicles for drug and gene delivery, Acc. Chem. Res., 36, 335, 10.1021/ar9703241
Lynch, 2008, Protein–nanoparticle interactions, Nano Today, 3, 40, 10.1016/S1748-0132(08)70014-8
Cedervall, 2007, Understanding the nanoparticle-protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles, Proc. Natl Acad. Sci. U. S. A., 104, 2050, 10.1073/pnas.0608582104
Cedervall, 2007, Detailed identification of plasma proteins adsorbed on copolymer nanoparticles, Angew. Chem. Int. Ed., 46, 5754, 10.1002/anie.200700465
Lynch, 2007, The nanoparticle-protein complex as a biological entity; a complex fluids and surface science challenge for the 21st century, Adv. Colloid Interface Sci., 134–35, 167, 10.1016/j.cis.2007.04.021
Lundqvist, 2008, Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts, Proc. Natl Acad. Sci. U. S. A., 105, 14265, 10.1073/pnas.0805135105
Akiyama, 2009, The effects of PEG grafting level and injection dose on gold nanorod biodistribution in the tumor-bearing mice, J. Control. Release, 139, 81, 10.1016/j.jconrel.2009.06.006
Brewer, 2005, Probing BSA binding to citrate-coated gold nanoparticles and surfaces, Langmuir, 21, 9303, 10.1021/la050588t
Pramanik, 2008, Size-dependent interaction of gold nanoparticles with transport protein: a spectroscopic study, J. Lumin., 128, 1969, 10.1016/j.jlumin.2008.06.008
Lacerda, 2010, Interaction of gold nanoparticles with common human blood proteins, ACS Nano, 4, 365, 10.1021/nn9011187
Wangoo, 2008, Interaction of gold nanoparticles with protein: a spectroscopic study to monitor protein conformational changes, Appl. Phys. Lett., 92, 133104, 10.1063/1.2902302
Iosin, 2009, Study of protein-gold nanoparticle conjugates by fluorescence and surface-enhanced Raman scattering, J. Mol. Struct., 924–26, 196, 10.1016/j.molstruc.2009.02.004
Pan, 2007, Study on interaction between gold nanorod and bovine serum albumin, Colloids Surf. A Physicochem. Eng. Aspects, 295, 217, 10.1016/j.colsurfa.2006.09.002
Aubin-Tam, 2005, Gold nanoparticle cytochrome c complexes: the effect of nanoparticle ligand charge on protein structure, Langmuir, 21, 12080, 10.1021/la052102e
Nel, 2006, Toxic potential of materials at the nanolevel, Science, 311, 622, 10.1126/science.1114397
Hauck, 2008, Assessing the effect of surface chemistry on gold nanorod uptake, toxicity, and gene expression in mammalian cells, Small, 4, 153, 10.1002/smll.200700217
Takahashi, 2008, Surface modification of gold nanorods using layer-by-layer technique for cellular uptake, J. Nanopart. Res., 10, 221, 10.1007/s11051-007-9227-5
Marquis, 2009, Analytical methods to assess nanoparticle toxicity, Analyst, 134, 425, 10.1039/b818082b
Oyelere, 2007, Peptide-conjugated gold nanorods for nuclear targeting, Bioconjug. Chem., 18, 1490, 10.1021/bc070132i
Cho, 2009, Understanding the role of surface charges in cellular adsorption versus internalization by selectively removing gold nanoparticles on the cell surface with a I2/KI etchant, Nano Lett., 9, 1080, 10.1021/nl803487r
Huff, 2007, Controlling the cellular uptake of gold nanorods, Langmuir, 23, 1596, 10.1021/la062642r
Conner, 2003, Regulated portals of entry into the cell, Nature, 422, 37, 10.1038/nature01451
Chithrani, 2007, Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes, Nano Lett., 7, 1542, 10.1021/nl070363y
Chithrani, 2006, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 6, 662, 10.1021/nl052396o
Lewinski, 2008, Cytotoxicity of nanoparticles, Small, 4, 26, 10.1002/smll.200700595
Ostrowski, 2009, Nanotoxicology: characterizing the scientific literature, 2000–2007, J. Nanopart. Res., 11, 251, 10.1007/s11051-008-9579-5
Leonov, 2008, Detoxification of gold nanorods by treatment with polystyrenesulfonate, ACS Nano, 2, 2481, 10.1021/nn800466c
Takahashi, 2006, Modification of gold nanorods using phospatidylcholine to reduce cytotoxicity, Langmuir, 22, 2, 10.1021/la0520029
Rayavarapu, 2010, In vitro toxicity studies of polymer-coated gold nanorods, Nanotechnology, 21, 145101, 10.1088/0957-4484/21/14/145101
Alkilany, 2009, Gold nanoparticles with a polymerizable surfactant bilayer: synthesis, polymerization, and stability evaluation, Langmuir, 25, 13874, 10.1021/la901270x
Sisco, 2008, The effect of gold nanorods on cell-mediated collagen remodeling, Nano Lett., 8, 10235, 10.1021/nl802142h
Aillon, 2009, Effects of nanomaterial physicochemical properties on in vivo toxicity, Adv. Drug Deliv. Rev., 61, 457, 10.1016/j.addr.2009.03.010
Fischer, 2007, Nanotoxicity: the growing need for in vivo study, Curr. Opin. Biotechnol., 18, 565, 10.1016/j.copbio.2007.11.008
Niidome, 2006, PEG-modified gold nanorods with a stealth character for in vivo applications, J. Control. Release, 114, 343, 10.1016/j.jconrel.2006.06.017
Balasubramanian, 2010, Biodistribution of gold nanoparticles and gene expression changes in the liver and spleen after intravenous administration in rats, Biomaterials, 31, 2034, 10.1016/j.biomaterials.2009.11.079
Tong, 2009, Visualizing systemic clearance and cellular level biodistribution of gold nanorods by intrinsic two-photon luminescence, Langmuir, 25, 12454, 10.1021/la902992w
Wang, 2010, Characterization of gold nanorods in vivo by integrated analytical techniques: their uptake, retention, and chemical forms, Anal. Bioanal. Chem., 396, 1105, 10.1007/s00216-009-3302-y
Ferry, 2009, Transfer of gold nanoparticles from the water column to the estuarine food web, Nat. Nanotechnol., 4, 441, 10.1038/nnano.2009.157
Konig, 2000, Multiphoton microscopy in life sciences, J. Microsc., 200, 83, 10.1046/j.1365-2818.2000.00738.x
Link, 2000, How does a gold nanorod melt?, J. Phys. Chem. B, 104, 7867, 10.1021/jp0011701
Inasawa, 2005, Laser-induced shape transformation of gold nanoparticles below the melting point: the effect of surface melting, J. Phys. Chem. B, 109, 3104, 10.1021/jp045167j
Takahashi, 2006, Photothermal reshaping of gold nanorods prevents further cell death, Nanotechnology, 17, 4431, 10.1088/0957-4484/17/17/024
Timko, 2010, Remotely triggerable drug delivery systems, Adv. Mater., 22, 4925, 10.1002/adma.201002072