Adaptivity with relaxation for ill-posed problems and global convergence for a coefficient inverse problem
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. V. Klibanov, M. A. Fiddy, L. Beilina, N. Pantong, J. Schenk, “Picosecond scale experimental verification of a globally convergent algorithm for a coefficient inverse problem,” Inverse Probl. 26, ID 045003 (2010).
H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht (2000).
R. Ramlau, “A steepest descent algorithm for the global minimization of the Tikhonov functional,” Inverse Probl. 18, No. 2, 381–403 (2002).
L. Beilina, M. V. Klibanov, “A globally convergent numerical method for a coefficient inverse problem,” SIAM J. Sci. Comput. 31, No. 1, 478–509 (2008).
L. Beilina, M. V. Klibanov, “Synthesis of global convergence and adaptivity for a hyperbolic coefficient inverse problem in 3D,” J. Inverse Ill-Posed Probl. 18, No. 1, 85–132 (2010).
L. Beilina, M. V. Klibanov, “A posteriori error estimates for the adaptivity technique for the Tikhonov functional and global convergence for a coefficient inverse problem,” Inverse Probl. 26, ID 045012 (2010).
A. Griesbaum, B. Kaltenbacher, B. Vexler, “Efficient computation of the Tikhonov regularization parameter by goal-oriented adaptive discretization,” Inverse Probl. 24, No. 2, ID 025025 (2008).
M. Ainsworth, J. T. Oden, A Posteriori Error Estimation in Finite Element Analysis, Wiley, New York (2000).
L. Beilina, C. Johnson, “Hybrid FEM/FDM method for an inverse scattering problem,” In: Numerical Mathematics and Advanced Applications. Proceedings of ENUMATH 2001, pp. 545–556, Springer, Berlin (2003).
L. Beilina, C. Clason, “An adaptive hybrid FEM/FDM method for an inverse scattering problem in scanning acoustic microscopy,” SIAM J. Sci. Comput. 28, No. 1, 382–402 (2006).
A. N. Tikhonov, V. Y. Arsenin, Solutions of Ill-Posed Problems, John Wiley and Sons, Washington (1977).
R. Ramlau, “TIGRA- an iterative algorithm for regularizing nonlinear ill-posed problems,” Inverse Probl. 19, No. 2, 433–465 (2003).
A. B. Bakushinsky, M. Yu. Kokurin, Iterative Methods for Approximate Solution of Inverse Problems, Springer, Dordrecht (2004).
K. Eriksson, D. Estep, C. Johnson, Calculus in Several Dimensions, Springer, Berlin (2004).
A. Hasanov, “Simultaneous determination of the source terms in a linear hyperbolic problem from the final overdetermination: weak solution approach,” IMA J. Appl. Math. 74, 1–19 (2009).
M. V. Klibanov, M. Yamamoto, “Lipschitz stability of an inverse problem for an acoustic equation,” Appl. Anal. 85, No. 5, 515–538 (2006).
M. V. Klibanov, A. Timonov, Carleman Estimates for Coefficient Inverse Problems and Numerical Applications, VSP, Utrecht (2004).
M. Minoux, Mathematical Programming. Theory and Algorithms, John Wiley and Sons, Chichester etc. (1986).
J. M. Ortega, W. C. Rheinboldt, Iterative Solution of Nonlinear Equations in Several Variables, Academic Press, New York etc. (1970).
M. Cheney, D. Isaacson, “Inverse problems for a perturbed dissipative half-space,” Inverse Probl. 11, No. 4, 865–888 (1995).
O. A. Ladyzhenskaya, N. N. Uralceva, Linear and Quasilinear Elliptic Equations, Academic Press, New York (1969).
O. A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Springer, New York etc. (1985).
L. C. Evans, Partial Differential Equations, Am. Math. Soc., Providence, RI (1998).
S. I. Kabanikhin, A. Hasanov, A. V. Penenko, “A gradient descent method for solving an inverse coefficient heat conduction problem” [in Russian], Sib. Zh. Vychisl. Mat. 11, No. 1, 41–51 (2008); English transl.: Numerical Anal. Appl. 1, No. 1, 34–45 (2008).
G. Chavent, “Deux résultats sur le probléme inverse dans les équations aux dérivées partielles du deuxième ordre an tet sur l’unicit de la solution du problème inverse de la diffusion,” C. R. Acad. Sc. Paris 270, 25–28 (1970).
L. Beilina, K. Samuelsson, K. Åhlander, “Efficiency of a hybrid method for the wave equation” In: Finite Element Methods. Three-Dimensional Problems. Proc. Intern. Conf., Jyvaskyla, Finland, June 28-July 1, 2000, pp. 9–21, Tokyo: Gakkotosho, Tokyo (2001).
B. Engquist, A. Majda, “Absorbing boundary conditions for the numerical simulation of waves,” Math. Comput. 31, 629–651 (1977).