Integrating complementary techniques for promoting diversity in classifier ensembles: A systematic study

Neurocomputing - Tập 138 - Trang 347-357 - 2014
Diego S.C. Nascimento1,2, André L.V. Coelho3, Anne M.P. Canuto2
1Federal Institute of Rio Grande do Norte, Brazil
2Department of Informatics and Applied Mathematics, Federal University of Rio Grande do Norte, Brazil
3Graduate Program in Applied Informatics, Center of Technological Sciences, University of Fortaleza, Brazil

Tài liệu tham khảo

Kuncheva, 2004 Polikar, 2006, Ensemble based systems in decision making, IEEE Circuits Syst. Mag., 6, 21, 10.1109/MCAS.2006.1688199 G. Brown, L.I. Kuncheva, “Good” and “bad” diversity in majority vote ensembles, in: N. Gayar, J. Kittler, F. Roli (Eds.), Multiple Classifier Systems—MCS 2010, Lecture Notes in Computer Science, vol. 5997, Springer, Berlin, 2010, pp. 124–133. Kuncheva, 2003, Measures of diversity in classifier ensembles, Mach. Learn., 51, 181, 10.1023/A:1022859003006 Schapire, 2012 M. Re, G. Valentini, Ensemble methods: a review, in: Advances in Machine Learning and Data Mining for Astronomy, 2012, pp. 563–582 Ho, 1998, The random subspace method for constructing decision forests, IEEE Trans. Pattern Anal. Mach. Intell., 20, 832, 10.1109/34.709601 Achlioptas, 2003, Database-friendly random projections, J. Comput. Syst. Sci., 66, 671, 10.1016/S0022-0000(03)00025-4 A. Bertoni, G. Valentini, Discovering significant structures in clustered bio-molecular data through the bernstein inequality, in: Proceedings of the 11th International Conference, KES 2007 and XVII Italian Workshop on Neural Networks Conference on Knowledge-Based Intelligent Information and Engineering Systems: Part III, Springer-Verlag, Berlin, Heidelberg, 2007, pp. 886–891. Q.L. Zhao, Y.J. Huang, M. Xu, Incremental learning by heterogeneous bagging ensemble, in: Proceedings of the 6th International Conference on Advanced Data Mining and Applications, ADMA 10, vol. II, Springer-Verlag, Berlin, Heidelberg, 2010, pp. 1–12. Q.-L. Zhao, Y.-H. Jiang, M. Xu, Incremental learning based on ensemble pruning, in: 8th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), vol. 1, 2011, pp. 377–381. Brown, 2005, Diversity creation methods, J. Inf. Fusion, 6, 5, 10.1016/j.inffus.2004.04.004 Breiman, 2001, Random forests, Mach. Learn., 45, 5, 10.1023/A:1010933404324 Dietterich, 2000, An experimental comparison of three methods for constructing ensembles of decision trees, Mach. Learn., 40, 139, 10.1023/A:1007607513941 T.G. Dietterich, Ensemble methods in machine learning, in: Proceedings of the 1st International Workshop on Multiple Classifier Systems, Springer, London, UK, 2000, pp. 1–15. Canuto, 2007, Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles, Pattern Recognit. Lett., 28, 472, 10.1016/j.patrec.2006.09.001 L.E.A. Santana, L. Silva, A.M.P. Canuto, F. Pintro, K.O. Vale, A comparative analysis of genetic algorithm and ant colony optimization to select attributes for an heterogeneous ensemble of classifiers, in: IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–8. Coelho, 2010, On the evolutionary design of heterogeneous bagging models, Neurocomputing, 73, 3319, 10.1016/j.neucom.2010.07.008 Nascimento, 2009, Ensembling heterogeneous learning models with boosting, vol. 5863, 512 Breiman, 1996, Bagging predictors, Mach. Learn., 24, 123, 10.1007/BF00058655 D.S.C. Nascimento, A.M.P. Canuto, L.M.M. Silva, A.L.V. Coelho, Combining different ways to generate diversity in bagging models: an evolutionary approach, in: International Joint Conference on Neural Networks (IJCNN), 2011, pp. 2235–2242. Guyon, 2006 Eiben, 2007 Chen, 2002 Witten, 2005 Geman, 1992, Neural networks and the bias/variance dilemma, Neural Comput., 4, 1, 10.1162/neco.1992.4.1.1 Opitz, 1999, Popular ensemble methods, J. Artif. Intell. Res., 11, 169, 10.1613/jair.614 A. Asunción, D.J. Newman, UCI Machine Learning Repository, University of California at Irvine, 〈http://ics.uci.edu/~mlearn/MLRepository.html〉, 2007. Kotsiantis, 2004, Combining bagging and boosting, Int. J. Comput. Intell., 1, 324 Demšar, 2006, Statistical comparisons of classifiers over multiple data sets, J. Mach. Learn. Res., 7, 1 Webb, 2000, Multiboosting, Mach. Learn., 40, 159, 10.1023/A:1007659514849 Brazdil, 2009