Experimental investigation on impingement/effusion cooling with short normal injection holes
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bunker, 2007, Gas turbine heat transfer: ten remaining hot gas path challenges, ASME J. Turbomach., 129, 193, 10.1115/1.2464142
Yu, 2002, Film cooling and heat transfer coefficient distributions around diffusion shaped holes, ASME J. Heat Transf., 124, 821, 10.1115/1.1418367
Colban, 2007, Experimental and computational comparison of fan-shaped film cooling on a turbine vane surface, ASME J. Turbomach., 129, 23, 10.1115/1.2370747
Lee, 2010, Shape optimization of a fan-shaped hole to enhance film-cooling effectiveness, Int. J. Heat Mass Transf., 53, 2996, 10.1016/j.ijheatmasstransfer.2010.03.032
Sargison, 2005, Flow visualization of the external flow from a converging slot-hole film-cooling geometry, Exp. Fluids, 38, 304, 10.1007/s00348-004-0892-1
Liu, 2010, Film cooling performance of converging slot-hole rows on a gas turbine blade, Int. J. Heat Mass Transf., 53, 5232, 10.1016/j.ijheatmasstransfer.2010.07.036
Yao, 2014, Numerical study of film cooling from converging slot-hole on a gas turbine blade suction side, Int. Commun. Heat Mass Transfer, 52, 61, 10.1016/j.icheatmasstransfer.2014.01.008
Kusterer, 2007, Double-jet ejection of cooling air for improved film cooling, ASME J. Turbomach., 129, 809, 10.1115/1.2720508
Han, 2012, Multi-parameter influence on combined-hole film cooling system, Int. J. Heat Mass Transf., 55, 4232, 10.1016/j.ijheatmasstransfer.2012.03.064
Yusop, 2013, Computational study of a new scheme for a film-cooling hole on convex surface of turbine blades, Int. Commun. Heat Mass Transfer, 43, 90, 10.1016/j.icheatmasstransfer.2013.02.011
Bunker, 2005, A review of turbine shaped film cooling technology, ASME J. Heat Transf., 127, 441, 10.1115/1.1860562
Cerri, 2007, Advances in effusive cooling techniques of gas turbines, Appl. Therm. Eng., 27, 692, 10.1016/j.applthermaleng.2006.10.012
Krewinkel, 2013, A review of gas turbine effusion cooling studies, Int. J. Heat Mass Transf., 66, 706, 10.1016/j.ijheatmasstransfer.2013.07.071
Mayle, 1975, Multihole cooling film effectiveness and heat transfer, ASME J. Heat Transf., 97, 534, 10.1115/1.3450424
Sasaki, 1979, Film cooling effectiveness for injection from multirow holes, ASME J. Eng. Power, 101, 101, 10.1115/1.3446430
Andrews, 1985, Full coverage discrete hole film cooling: cooling effectiveness, J. Turbo Jet Engines, 2, 199
Harrington, 2001, Full-coverage film cooling with short normal injection holes, ASME J. Turbomach., 123, 798, 10.1115/1.1400111
Scrittore, 2007, Investigation of velocity profiles for effusion cooling of a combustor liner, ASME J. Turbomach., 129, 518, 10.1115/1.2720492
Yang, 2012, Influence of multi-hole arrangement on cooling film development, Chin. J. Aeronaut., 25, 182, 10.1016/S1000-9361(11)60377-4
Lin, 2003
Zhang, 2009, Cooling effectiveness of effusion walls with deflection hole angles measured by infrared imaging, Appl. Therm. Eng., 29, 966, 10.1016/j.applthermaleng.2008.05.011
Facchini, 2010, Adiabatic and overall effectiveness measurements of an effusion cooling array for turbine endwall application, ASME J. Turbomach., 132, 10.1115/1.3213555
Ligrani, 2012, Full-coverage film cooling: film effectiveness and heat transfer coefficients for dense and sparse hole arrays at different blowing ratios, ASME J. Turbomach., 134, 10.1115/1.4006304
Andrews, 1988, Impingement/effusion cooling: overall wall heat transfer
Al Dabagh, 1990, Impingement/effusion cooling: the influence of the number of impingement holes and pressure loss on the heat transfer coefficient, ASME J. Turbomach., 112, 467, 10.1115/1.2927682
Cho, 2001, Local heat/mass transfer measurement on the effusion plate in impingement/effusion cooling systems, ASME J. Turbomach., 123, 601, 10.1115/1.1344904
Rhee, 2003, Local heat/mass transfer and flow characteristics of array impinging jets with effusion holes ejecting spent air, Int. J. Heat Mass Transf., 46, 1049, 10.1016/S0017-9310(02)00363-0
Rhee, 2004, Local heat/mass transfer with various rib arrangements in impingement/effusion cooling system with crossflow, ASME J. Turbomach., 126, 615, 10.1115/1.1791287
Hong, 2007, Effects of fin shapes and arrangements on heat transfer for impingement/effusion cooling with crossflow, ASME J. Heat Transfer, 129, 1697, 10.1115/1.2767727
Cho, 2008, Effects of hole arrangements on local heat/mass transfer for impingement/effusion cooling with small hole spacing, ASME J. Turbomach., 130, 10.1115/1.2812325
Hong, 2010, Local heat/mass transfer measurements on effusion plates in impingement/effusion cooling with rotation, Int. J. Heat Mass Transf., 53, 1373, 10.1016/j.ijheatmasstransfer.2009.12.022
Oh, 2008
Lee, 2009
Jung, 2010
Yang, 2012, Experimental investigation on film cooling characteristics from a row of holes with ridge-shaped tabs, Exp. Thermal Fluid Sci., 37, 113, 10.1016/j.expthermflusci.2011.10.011
Yao, 2013, Film cooling on a gas turbine blade suction with converging slot-hole, Int. J. Therm. Sci., 65, 267, 10.1016/j.ijthermalsci.2012.10.004
Carlomagno, 2010, Infrared thermography for convective heat transfer measurements, Exp. Fluids, 49, 1187, 10.1007/s00348-010-0912-2
Moffat, 1988, Describing the uncertainties in experimental results, Exp. Thermal Fluid Sci., 1, 3, 10.1016/0894-1777(88)90043-X
San, 2001, Optimum jet-to-jet spacing of heat transfer for staggered arrays of impinging air jets, Int. J. Heat Mass Transf., 44, 3997, 10.1016/S0017-9310(01)00043-6
Terzis, 2015, Effect of varying jet diameter on heat transfer distributions of narrow impingement channels, ASME J. Turbomach., 137, 10.1115/1.4028294
Shan, 2015, Convective heat transfer for multiple rows of impinging air jets with small jet-to-jet spacing in a semi-confined channel, Int. J. Heat Mass Transf., 86, 832, 10.1016/j.ijheatmasstransfer.2015.03.073