Exopolysaccharides from marine bacteria
Tóm tắt
Microbial polysaccharides represent a class of important products of growing interest for many sectors of industry. In recent years, there has been a growing interest in isolating new exopolysaccharides (EPSs)-producing bacteria from marine environments, particularly from various extreme marine environments. Many new marine microbial EPSs with novel chemical compositions, properties and structures have been found to have potential applications in fields such as adhesives, textiles, Pharmaceuticals and medicine for anti-cancer, food additives, oil recovery and metal removal in mining and industrial waste treatments, etc This paper gives a brief summary of the information about the EPSs produced by marine bacteria, including their chemical compositions, properties and structures, together with their potential applications in industry.
Tài liệu tham khảo
Anton, J., I. Meseguer, and F. Rodrlguea-valera, 1988. Production of an extracellular polysaccharide by Haloferax mediterranei. Applied and Environment Microbiolog., 54(10): 2381–2386.
Arena, A., 2004. Exopolysaccharides from marine thermophilic bacilli induce a Th1 cytokine profile in human PBMC. Clinical Microbiology and Infection., 10: 366.
Bartlett, D. H., E. M. Wright, and M. Sliverman, 1988. Variable expression of extracellular polysaccharide in the marine bacterium Pseudomonas atlantica is controlled by genome rearrangement. Proc. Natl. Acad. Sci., 88: 3923–3927.
Boyle, CD., and A.E. Reade, 1983. Characterization of two extracellular polysaccharide marine bacteria. Appli. Enrivo. Microbol., 46(2): 392–399.
Bozzi, L., M. Milas, and M. Tinaudo, 1996. Characterization and solution properties of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int. J. Biol. Macromol., 18: 9–17.
Bozzi, L., M. Milas, and M. Tinaudo, 1996. Solution and gel rheology of a new exopolysaccharide excreted by the bacterium Alteromonas sp. strain 1644. Int. J. Biol. Macromol., 18: 83–91.
Cambon-Bonavita, M.A., G. Raguenes, J. Jean, P. Vincent, and J. Guezennec, 2002. A novel polymer produced by a bacterium isolated from a deep-sea hydrothermal vent Polychate annelid. Appl. Environ. Microbiol., 93: 310–315.
Chi, Z., and S. Z. Zhao, 2003. Optimization of medium and cultivation conditions for pullulan production by a new pullulan-producing yeast. Enzyme and Microbial Technology, 33: 206–211.
Christensen, B.E., J. Kjosbakken, and O. Smifdtof, 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic pseudomonas sp. strain NCMB 2021. Appl. Environ. Microbiol., 50(4): 837–845.
Gorshkova, R.P., E. L. Nazarenko, V.A. Zubkov, E.P. Ivanova, Ovodov IuS, et al., 1993. Structure of the repeating link of the acid polysaccharide of Alteromonas haloplanktis KMM 156. Bioorg Khim., 19(3): 327–336.
Guezennec, J., 2002. Deep-sea hydrothermal vents: Anew source of innovative bacterial exopolysaccharides of biotechnological interest? Journal of Industrial Microbiology and Biotechnology, 29: 204–208.
Guezennec, J., P. Pignet, Y. Lijour, E. Gentric, J. Ratiskol, et al., 1998. Sulfation and depolymerization of a bacterial exopolysaccharides of hydrothermal origin. Carbohy. Poly., 37: 19–24.
Hoskins, D.L., S.E. Stancyk, and A.W. Decho, 2003. Utilization of algal and bacterial extrcellular polymeric secretions (EPS) by the deposit-feeding brittiestar Amphipholis gracillima (Echinodermata). MPES., 247: 93–101.
Jayaraman, M., and J. Seetharaman, 2003. Phsicochemical analysis of the exopolysaccharides produced by a marine biofouling bacterium, Vibrio alginolytics. Process Biochemistr., 38(6): 841–847.
Jodi, L., Enos-Berlage, and L. McCarter, 2000. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. Journal of Bacteriology, 182(19): 5513–5520.
Kawaguchi, T., and A. W. Decho, 2000. Biochemical characterization of cyanobacterial extracellular polymers (EPS) from modern marine stromatolites (Bahamas). Prep. Biocheml. Biotechnol., 30(4): 321–330.
Kawaguchi, T., and A.W. Decho, 2001. Potential roles of extracellular polymeric secretions (EPS) in regulating calci. cation — A study of marine stromatolites, Bahamas. Thalassas, 17(2): 11–19.
Lee, H.K., J. Chun, E. Y. Moon, S. H. Ko, D. S. Lee, et al., 2001. Hahella chejuensis gen. nov., sp. nov., an extracellular-polysaccharide-producing marine bacterium. International Journal of Systematic and Evolutionary Microbiology, 2: 661–666.
Lee, Y.K., H.W. Kim, C.L. Liu, and H.K. Lee, 2003. A simple method for DNA extraction from marine bacteria that produce extracellular materials. Journal of microbiological Methods, 52: 245–250.
MacCormick, C.A., J.E. Harris, A.J. Jay, M.J. Ridout, I.J. Colquhoun, et al., 1996. Isolation and characterization of new extracellular polysaccharide from an Acetobacter species. J. Appl. Bacteriol., 81: 419–424.
Maugeri, T.L., C. Gugliandolo, D. Caccamo, A. Panico, L. Lama, et al., 2002. A halophilic thermotolerant Bacillus isolated from a marine hot spring able to produce a new exopolysaccharide. Biotechnology Letters, 24(7): 515–519.
Nazarenko, E. L., V. A. Zubkov, A. S. Shashkov, R. P. Gorshkova, E.P. Ivanova, et al., 1993. Structure of the repeating unit of acid polysaccharide from Alteromonas macleodii 2MM6. Bioorg Khim., 19(7): 740–751.
Nicolaus, B., L. Lama, A. Panico, V.S. Moriello, I. Romano, et al., 2004. Production and characterization of exopolysaccharides excreted by thermophilic bacteria from shallow, marine hydrothermal vents of Flegrean Ares (Italy). Systematic and Applied Microbiology, 25 (3): 319–325
Nicolaus, B., M. V. Schiano, L. Lama, A. Poli, and A. Gambacorta, 2004. Polysaccharides from extremophilic microorganisms. Orig. life. Evol. Biosph., 34(1–2): 159–169.
Nicolaus, B., M. V. Schiano, L. Lama, A. Poli, C. Gugliandolo, et al., 2003. Production of exopolysaccharides from a thermophilic microorganism isolated from a marine hot spring in flegrean areas. J. Ind. Microbiol Biotechnol., 30: 95–101.
Nichols, M. C. A., S. Garon, J. P. Bowman, G. Raguenes, J. Guezennec, et al., 2004. Production of exopolysaccharides by Antarctic marine bacterial isolates. Journal of Applied Microbiology, 96: 1057–1066.
Querellou, J., 2003. Biotechnology of marine extremopiles. Journal of Thrombosis and Haemostasis, 1: 12–18.
Quintero, E.J., and R.M. Weiner, 1995. Evidence for the adhesive function of the exopolysaccharide of hyphomonas strain MHS-3 in its attachment to surfaces. Appl. Environ Microbi., 61(5): 1897–1903.
Quintero, E.J., S.E. Langille, and R.M. Weiner, 2001. The polar polysaccharide capsule of Hyphomonas adhaerens MHS-3 has a strong affinity for gold. Journal of Industrial Microbiology and Biotechnology, 27: 1–4.
Raguenes, G., A. Peres, R. Ruimy, P. Pignet, R. Christen, et al., 1997. Alteromonas infernus sp. nov., a new polysaccharide producing bacterium isolated from a deepsea hydrothermal vent. J. Appl. Bacteriol., 82: 422–430.
Raguenes, G., P. Pignet, G. Gauthier, A. Peres, R. Christen, et al., 1996. Description of a new polymer-secreting bacterium from a deep-sea hydrothermal vent, Alt. macleodii subsp fijiensis, and preliminary characterization of the polymer. Appl. Environ. Microbil., 62: 67–73.
Rinker, K.D., and K. Robertm, 1996. Growth Physiology of the Hyperthermophilic Archaeon Thermococcus litoralis: Development of a Sulfur-Free Defined Medium, Characterization of an Exopolysaccharide, and Evidence of Biofilm Formation. Appl. Environ. Microbil., 12: 4478–4485.
Rougeaux, H., J. Guezennec, R. W. Carlson, R. Pichon, N. Kervarec, et al., 1999. Structural determination of the exopolysaccharide of Pseudoalteromonas strain HYD 721 isolated from a deep-sea hydrothermal vent. Carbohydr. Res., 315: 273–285.
Rougeaux, H., N. Kervarec, R. Pichon, and J. Guezennec, 1999. Structure of the exopolysaccharide of Vibrio diabolicus isolated from a deep-sea hydrothermal vent. Carbohydr. Res., 322: 40–45.
Rougeaux, H., P. Talaga, R. W. Carson, and J. Guezennec, 1998. Structural studies of an exopolysaccharide produced by Alt. macleodii subsp fijiensis originating from a deep-sea hydrothermal vent. Carbohydr. Res., 312: 53–59.
Shah, V., A. Ray, N. Ray, and D. Madamwar, 2000. Characterization of the extracellular polysaccharide produced by a marine cyanobacterium, Cyanothece sp. ATCC51142, and its exploitation toward metal removal from solutions. Current Microbiology, 40: 274–278.
Sledjekit, D., and R. M. Weiner, 1993. Production and characterization of monoclonal antibodies specific for Shewanella colwelliana exopolysaccharide. Appl. Enviro. Microbiol., 59(5): 1565–1572.
Talmont, F., P. Vincent, T.F. ontaine, J. Guezennec, D. Prieur, et al., 1991. Structural investigation of an acidic exopolysaccharide from a deep-sea hydrothermal vent marine bacteria. Food Hydrocoll., 5: 171–172.
Taylor, CD., CO. Wirsen, and F. Gaill, 1999. Rapid microbial production of filamentous sulfur mats at hydrothermal vents. Appl. Environ Microbiol., 65: 2253–2255.
Techkarnjanaruk, S., S. Pongpattanakitshote, and A. E. Goodman, 1986. Use of a promoterless lacZ gene insertion to investigate chitinase gene expression in the marine bacterium Pseudoalteromonas sp. strain S9. Arch Microbiol., 145(3):220–227.
Umezawa, H., Y. Okami, S. Kurasawa, T. Ohnuki, M. Ishizuka, et al., 1983. Marinactan, antitumor polysaccharide produced by marine bacteria. J. Antibiot., 36(5): 471–477.
Vincent, P., P. Pignet, F. Talmont, L. Bozzi, B. Fournet, et al., 1994. Production and characterization of an exopolysaccharide excreted by a deep-sea hydrothermal vent bacterium isolated from the polychaete annelid Alvinella pompejana. Appl. Environ. Microbiol., 60(11): 4134–4141.
Weiner, R., S. Langille, and E. Quintero, 1995. Structure, function and immunochemistry of bacterial exopolysaccharides. J Ind. Microbiol., 15: 339–346.
Weiner, R. M. 1997. Biopolymers from marine prokaryotes. Marine Biotechnology, 15: 390–394.
Wrangstadh, M., P. L. Conway, and S. Kjellebery, 1986. The production and release of an extacellular polysaccharide during starvation of a marine Pseudomonas sp. and the effect thereof on adhesion. Arch Microbil., 145: 220–2227.
Wrangstadh, M., P. L. Conway, and S. Kjellebery, 1989. The role of an extracellular polysaccharide produced by the marine Pseydomonas sp. S9 in cellular detachment during starvation. Can. J. Microbiol., 35: 309–312.
Zanchetta, P., N. Lagarde, and J. Guezennec, 2003. A new bone- healing material: a hyaluronic acid-like bacterial exopolysaccharide. Calcif Tissue Int., 72: 74–79.
Zhao, S. Z., and Z. Chi, 2003. A new pullulan-producing yeast and medium optimization for its exopolysaccharide production. Journal of Ocean University of Qingdao, 2: 53–557.
Zinkevich, V., I. Bogdarina, H. Kang, M.A.W. Hill, R. Tapper, et al., 1996. Characterization of exopolymers produced by different isolates of marine sulphate-reducing bacteria. International Biodeteriorarion and Biodegradation, 37: 163–172.