Biomechanical Characterisation of the Human Auricular Cartilages; Implications for Tissue Engineering

Springer Science and Business Media LLC - Tập 44 - Trang 3460-3467 - 2016
M. F. Griffin1, Y. Premakumar2, A. M. Seifalian1, M. Szarko2, P. E. M. Butler1,3
1UCL Division of Surgery & Interventional Science, Centre for Nanotechnology & Regenerative Medicine, University College London, London, UK
2Anatomical Sciences, Institute for Medical and Biomedical Education, St. George’s, University of London, London, UK
3Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK

Tóm tắt

Currently, autologous cartilage provides the gold standard for auricular reconstruction. However, synthetic biomaterials offer a number of advantages for ear reconstruction including decreased donor site morbidity and earlier surgery. Critical to implant success is the material’s mechanical properties as this affects biocompatibility and extrusion. The aim of this study was to determine the biomechanical properties of human auricular cartilage. Auricular cartilage from fifteen cadavers was indented with displacement of 1 mm/s and load of 300 g to obtain a Young’s modulus in compression. Histological analysis of the auricle was conducted according to glycoprotein, collagen, and elastin content. The compression modulus was calculated for each part of the auricle with the tragus at 1.67 ± 0.61 MPa, antitragus 1.79 ± 0.56 MPa, concha 2.08 ± 0.70 MPa, antihelix 1.71 ± 0.63 MPa, and helix 1.41 ± 0.67 MPa. The concha showed to have a significantly greater Young’s Elastic Modulus than the helix in compression (p < 0.05). The histological analysis demonstrated that the auricle has a homogenous structure in terms of chondrocyte morphology, extracellular matrix and elastin content. This study provides new information on the compressive mechanical properties and histological analysis of the human auricular cartilage, allowing surgeons to have a better understanding of suitable replacements. This study has provided a reference, by which cartilage replacements should be developed for auricular reconstruction.

Tài liệu tham khảo

Adams, J. S. Graphs and implants in chin and nasal augumentation: a rational approach to material selection. Otolaryngol. Clin. North Am. 20(4):913–930, 1987. Berghaus A. Implants for reconstructive surgery of the nose and ears. Curr. Top. Otorhinolaryngol. Head Neck Surg. 6:Doc06, 2007. Cenzi, R., A. Farina, L. Zuccarino, and F. Carinci. Clinical outcome of 285 Medpor grafts used for craniofacial reconstruction. J. Craniofac. Surg. 16:526–530, 2005. Grellmann, W., A. Berghaus, E. J. Haberland, Y. Jamali, K. Holweg, K. Reincke, and C. Bierögel. Determination of strength and deformation behavior of human cartilage for the definition of significant parameters. J. Biomed. Mater. Res. A. 78:168–174, 2006. Griffin, M. F., Y. Premakumar, A. M. Seifalian, M. Szarko, and P. E. Butler. Biomechanical characterisation of the human nasal cartilages; implications for tissue engineering. J. Mater. Sci. 27:11, 2016. Jurvelin, J. S., M. D. Buschmann, and E. B. Hunziker. Mechanical anisotropy of the human knee articular cartilage in compression. Proc. Inst. Mech. Eng. H. 217:215–219, 2003. Kawanabe, Y., and S. Nagata. A new method of costal cartilage harvest for total auricular reconstruction: part I. Avoidance and prevention of intraoperative and postoperative complications and problems. Plast. Reconstr. Surg. 117:2011–2018, 2006. Kumbar, S. G., C. T. Laurenc, and M. Deng. Natural and Synthetic Polymers. Amsterdam: Elsevier Science, 2014. Lin, G., and W. Lawson. Complications using grafts and implants in rhinoplasty. Oper. Tech. Otolaryngol. Head Neck Surg. 18:315–323, 2007. Lu, X. L., and V. C. Mow. Biomechanics of articular cartilage and determination of material properties. Med. Sci. Sports Exerc. 40:193–199, 2008. Luquetti, D. V., E. Leoncini, and P. Mastroiacovo. Microtia-anotia: a global review of prevalence rates. Birth Defects Res. A Clin. Mol. Teratol. 91:813–822, 2012. Nayyer, L., M. Birchall, A. M. Seifalian, and G. Jell. Design and development of nanocomposite scaffolds for auricular reconstruction. Nanomedicine. 10:235–246, 2014. Nimeskern, L., M. M. Pleumeekers, D. J. Pawson, W. L. Koevoet, I. Lehtoviita, M. B. Soyka, C. Röösli, D. Holzmann, G. J. van Osch, R. Müller, and K. S. Stok. Mechanical and biochemical mapping of human auricular cartilage for reliable assessment of tissue-engineered constructs. J. Biomech. 48:1721–1729, 2015. Ramakrishna, S., J. Mayer, E. Wintermatel, and K. W. Leong. Biomedical application for polymer composite materials: a review. Compos. Sci. Technol. 61:1189–1224, 2004. Reiffel, A. J., C. Kafka, K. A. Hernandez, S. Popa, J. L. Perez, S. Zhou, S. Pramanik, B. N. Brown, W. S. Ryu, L. J. Bonassar, and J. A. Spector. High-fidelity tissue engineering of patient-specific auricles for reconstruction of pediatric microtia and other auricular deformities. PLoS One 8:e56506, 2013. Sivayoham, E., and T. J. Woolford. Current opinion on auricular reconstruction. Curr. Opin. Otolaryngol. Head Neck Surg. 20:287–290, 2012. Tavakol, K. Proteoglycan & Collagen Degrading Activities of Neural Proteases from Fresh and Cryopreserved Articular Cartilage Explants and the Chondrocytes. An In Vitro Biochemical Study. Phd Thesis, University of Calgary, 1989. Walton, R. L., and E. K. Beahm. Auricular reconstruction for microtia: part II. Surgical techniques. Plast. Reconstr. Surg. 110:234–249, 2002. Wood, J. M., M. Soldin, T. J. Shaw, and M. Szarko. The biomechanical and histological sequelae of common skin banking methods. J. Biomech. 47:1215–1219, 2014. Xia, Y., S. Zheng, M. Szarko, and J. Lee. Anisotropic properties of bovine nasal cartilage. Microsc. Res. Tech. 75:300–306, 2012. Yogi Goswami, D. The CRC Handbook of Mechanical Engineering (2nd ed.). Boca Raton: CRC Press, 2004. Zahnert, T., K. B. Hüttenbrink, D. Mürbe, and M. Bornitz. Experimental investigations of the use of cartilage in tympanic membrane reconstruction. Am. J. Otol. 21:322–328, 2000. Zhang, Q., R. Zhang, F. Xu, P. Jin, and Y. Cao. Auricular reconstruction for microtia: personal 6-year experience based on 350 microtia ear reconstructions in China. Plast. Reconstr. Surg. 123:849–858, 2009. Zopf, D. A., C. L. Flanagan, H. B. Nasser, A. G. Mitsak, F. S. Huq, V. Rajendran, G. E. Green, and S. J. Hollister. Biomechanical evaluation of human and porcine auricular cartilage. Laryngoscope. 125:E262–E268, 2015.