Evaluation of the copper(II) reduction assay using bathocuproinedisulfonic acid disodium salt for the total antioxidant capacity assessment: The CUPRAC–BCS assay
Tài liệu tham khảo
1997
MacDonald-Wicks, 2006, Methodology for the determination of biological antioxidant capacity in vitro: a review, J. Sci. Food Agric., 86, 2046, 10.1002/jsfa.2603
Bartosz, 2003, Total antioxidant capacity, Adv. Clin. Chem., 37, 219, 10.1016/S0065-2423(03)37010-6
Huang, 2005, The chemistry behind antioxidant capacity assays, J. Agric. Food Chem., 53, 1841, 10.1021/jf030723c
Kaur, 2006, Screening methods for antioxidants: a review, Mini Rev. Med. Chem., 6, 305, 10.2174/138955706776073448
Somogyi, 2007, Antioxidant measurements, Physiol. Meas., 28, R41, 10.1088/0967-3334/28/4/R01
Magalhaes, 2008, Methodological aspects about in vitro evaluation of antioxidant properties, Anal. Chim. Acta, 613, 1, 10.1016/j.aca.2008.02.047
Karadag, 2009, Review of methods to determine antioxidant capacities, Food Anal. Methods, 2, 41, 10.1007/s12161-008-9067-7
Cao, 1998, Comparison of different analytical methods for assessing total antioxidant capacity of human serum, Clin. Chem., 44, 1309, 10.1093/clinchem/44.6.1309
Prior, 1999, In vivo total antioxidant capacity: Comparison of different analytical methods, Free Radic. Biol. Med., 27, 1173, 10.1016/S0891-5849(99)00203-8
Rice-Evans, 2000, Measurement of total antioxidant activity as a marker of antioxidant status in vivo: procedures and limitations, Free Radic. Res., 33, S59
Janaszewska, 2002, Assay of total antioxidant capacity: Comparison of four methods as applied to human blood plasma, Scand. J. Clin. Lab. Invest., 62, 231, 10.1080/003655102317475498
Schlesier, 2002, Assessment of antioxidant activity by using different in vitro methods, Free Radic. Res., 36, 177, 10.1080/10715760290006411
Ou, 2002, Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: a comparative study, J. Agric. Food Chem., 50, 3122, 10.1021/jf0116606
Ozgen, 2006, Modified 2,2-azino-bis-3-ethylbenzothiazoline-6-sulfonic acid (ABTS) method to measure antioxidant capacity of selected small fruits and comparison to ferric reducing antioxidant power (FRAP) and 2, 2′-diphenyl-1-picrylhydrazyl (DPPH) methods, J. Agric. Food Chem., 54, 1151, 10.1021/jf051960d
Apak, 2005, Total antioxidant capacity assay of human serum using copper(II)–neocuproine as chromogenic oxidant: the CUPRAC method, Free Radic. Res., 39, 949, 10.1080/10715760500210145
Apak, 2007, Comparative evaluation of various total antioxidant capacity assays applied to phenolic compounds with the CUPRAC assay, Molecules, 12, 1496, 10.3390/12071496
Apak, 2008, Mechanism of antioxidant capacity assays and the CUPRAC (cupric ion reducing antioxidant capacity) assay, Microchim. Acta, 160, 413, 10.1007/s00604-007-0777-0
G. Da Cruz, Use of bathocuproine for the evaluation of the antioxidant power in liquids and solutions, U.S. patent 6613577, 2003.
Benzie, 1996, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal. Biochem., 239, 70, 10.1006/abio.1996.0292
Miller, 1993, A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates, Clin. Sci., 84, 407, 10.1042/cs0840407
Rice-Evans, 1994, Total antioxidant status in plasma and body fluids, Methods Enzymol., 234, 279, 10.1016/0076-6879(94)34095-1
Re, 1999, Antioxidant activity applying an improved ABTS radical cation decolorization assay, Free Radic. Biol. Med., 26, 1231, 10.1016/S0891-5849(98)00315-3
Miller, 1993
Zak, 1958, Simple procedure for the single sample determination of serum copper and iron, Clin. Chim. Acta, 3, 328, 10.1016/0009-8981(58)90021-4
Watkins, 1971, Determination of copper, iron, and zinc from a single small sample, Microchem. J., 16, 14, 10.1016/0026-265X(71)90077-4
Blair, 1961, Bathophenanthrolinedisulphonic acid and bathocuproinedisulphonic acid, water soluble reagents for iron and copper, Talanta, 7, 163, 10.1016/0039-9140(61)80006-4
Sánchez-Rasero, 1981, Stoichiometry, Ringbom optimal range, and other parameters for the copper(I)–bathocuproine complex, Microchem. J., 26, 418, 10.1016/0026-265X(81)90120-X
Pulido, 2000, Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay, J. Agric. Food Chem., 48, 3396, 10.1021/jf9913458
Grootveld, 1987, Measurement of allantoin and uric acid in human body fluids: a potential index of free-radical reactions in vivo?, Biochem. J., 243, 803, 10.1042/bj2430803
Erel, 2004, A novel automated direct measurement method for total antioxidant capacity using a new generation, more stable ABTS radical cation, Clin. Biochem., 37, 277, 10.1016/j.clinbiochem.2003.11.015
Ghiselli, 2000, Total antioxidant capacity as a tool to assess redox status: critical view and experimental data, Free Radic. Biol. Med., 29, 1106, 10.1016/S0891-5849(00)00394-4
Lynch, 1995, Reduction of copper, but not iron, by human low density lipoprotein (LDL): implications for metal ion-dependent oxidative modification of LDL, J. Biol. Chem., 270, 5158, 10.1074/jbc.270.10.5158
Opazo, 2000, Amyloid–β-peptide reduces copper(II) to copper(I) independent of its aggregation state, Biol. Res., 33, 125, 10.4067/S0716-97602000000200012
Ruiz, 2000, The N-terminal tandem repeat region of human prion protein reduces copper: role of tryptophan residues, Biochem. Biophys. Res. Commun., 269, 491, 10.1006/bbrc.2000.2270