Targeted drug delivery for tumor therapy inside the bone marrow
Tài liệu tham khảo
Martinez-Agosto, 2007, The hematopoietic stem cell and its niche: a comparative view, Gene. Dev., 21, 3044, 10.1101/gad.1602607
Le Blanc, 2012, Multipotent mesenchymal stromal cells and the innate immune system, Nat. Rev. Immunol., 12, 383, 10.1038/nri3209
Colmone, 2008, Leukemic cells create bone marrow niches that disrupt the behavior of normal hematopoietic progenitor cells, Science, 322, 1861, 10.1126/science.1164390
Podar, 2009, Bone marrow microenvironment and the identification of new targets for myeloma therapy, Leukemia, 23, 10, 10.1038/leu.2008.259
Suva, 2011, Bone metastasis: mechanisms and therapeutic opportunities, Nat. Rev. Endocrinol., 7, 208, 10.1038/nrendo.2010.227
Djunic, 2011, Osteolytic lesions marker in multiple myeloma, Med. Oncol., 28, 237, 10.1007/s12032-010-9432-4
Swami, 2014, Engineered nanomedicine for myeloma and bone microenvironment targeting, Proc. Natl. Acad. Sci. U. S. A., 111, 10287, 10.1073/pnas.1401337111
Adjei, 2016, Inhibition of bone loss with surface-modulated, drug-loaded nanoparticles in an intraosseous model of prostate cancer, J. Control Release, 232, 83, 10.1016/j.jconrel.2016.04.019
Sou, 2011, Bone marrow-targeted liposomal carriers, Expert Opin. Drug Deliv., 8, 317, 10.1517/17425247.2011.553218
Ewalt, 2016, Selective quantitation of microvessel density reveals sinusoidal expansion in myelodysplastic syndromes, Leuk. Lymphoma, 57, 2923, 10.3109/10428194.2016.1170829
Bianco, 2011, Bone and the hematopoietic niche: a tale of two stem cells, Blood, 117, 5281, 10.1182/blood-2011-01-315069
Morrison, 2014, The bone marrow niche for haematopoietic stem cells, Nature, 505, 327, 10.1038/nature12984
Nombela-Arrieta, 2013, Quantitative imaging of haematopoietic stem and progenitor cell localization and hypoxic status in the bone marrow microenvironment, Nat. Cell Biol., 15, 533, 10.1038/ncb2730
Vega, 2002, The stromal composition of malignant lymphoid aggregates in bone marrow: variations in architecture and phenotype in different B-cell tumours, Br. J. Haematol., 117, 569, 10.1046/j.1365-2141.2002.03497.x
Morrison, 2008, Stem cells and niches: mechanisms that promote stem cell maintenance throughout life, Cell., 132, 598, 10.1016/j.cell.2008.01.038
Moghimi, 1995, Exploiting bone marrow microvascular structure for drug delivery and future therapies, Adv. Drug Deliv. Rev., 17, 61, 10.1016/0169-409X(95)00041-5
Podar, 2005, The pathophysiologic role of VEGF in hematologic malignancies: therapeutic implications, Blood, 105, 1383, 10.1182/blood-2004-07-2909
Zhao, 2016, Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation, Oncol. Lett., 12, 793, 10.3892/ol.2016.4733
Stasi, 2002, The role of angiogenesis in hematologic malignancies, J. Hematother. Stem Cell Res., 11, 49, 10.1089/152581602753448531
Negaard, 2009, Increased bone marrow microvascular density in haematological malignancies is associated with differential regulation of angiogenic factors, Leukemia, 23, 162, 10.1038/leu.2008.255
Chand, 2016, Role of microvessel density and vascular endothelial growth factor in angiogenesis of hematological malignancies, Bone Marrow Res., 2016, 10.1155/2016/5043483
Manier, 2012, Bone marrow microenvironment in multiple myeloma progression, J. Biomed. Biotechnol., 2012
Kiel, 2008, Uncertainty in the niches that maintain haematopoietic stem cells, Nat. Rev. Immunol., 8, 290, 10.1038/nri2279
Kaplan, 2005, VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche, Nature, 438, 820, 10.1038/nature04186
Chen, 2016, Fate decision of mesenchymal stem cells: adipocytes or osteoblasts[quest], Cell Death Differ., 23, 1128, 10.1038/cdd.2015.168
Boyle, 2003, Osteoclast differentiation and activation, Nature, 423, 337, 10.1038/nature01658
Ara, 2010, Interleukin-6 in bone metastasis and cancer progression, Eur. J. Cancer, 46, 1223, 10.1016/j.ejca.2010.02.026
Williams, 2006, Leukaemia: niche retreats for stem cells, Nature, 444, 827, 10.1038/444827a
Kyle, 2009, Criteria for diagnosis, staging, risk stratification and response assessment of multiple myeloma, Leukemia, 23, 3, 10.1038/leu.2008.291
Bataille, 1997, Multiple myeloma, N. Engl. J. Med., 336, 1657, 10.1056/NEJM199706053362307
Morgan, 2012, The genetic architecture of multiple myeloma, Nat. Rev. Cancer, 12, 335, 10.1038/nrc3257
Alsayed, 2007, Mechanisms of regulation of CXCR4/SDF-1 (CXCL12)-dependent migration and homing in multiple myeloma, Blood, 109, 2708, 10.1182/blood-2006-07-035857
Wang, 2007, Inhibition of adhesive interaction between multiple myeloma and bone marrow stromal cells by PPARgamma cross talk with NF-kappaB and C/EBP, Blood, 110, 4373, 10.1182/blood-2006-07-038026
Gupta, 2001, Adherence of multiple myeloma cells to bone marrow stromal cells upregulates vascular endothelial growth factor secretion: therapeutic applications, Leukemia, 15, 1950, 10.1038/sj.leu.2402295
Rajkumar, 2011, Treatment of multiple myeloma, Nat. Rev. Clin. Oncol., 8, 479, 10.1038/nrclinonc.2011.63
Lowenberg, 1999, Acute myeloid leukemia, N. Engl. J. Med., 341, 1051, 10.1056/NEJM199909303411407
Gray, 2010, Gastrointestinal complications in children with acute myeloid leukemia, Leuk. Lymphoma, 51, 768, 10.3109/10428191003695652
Li, 2014, High-dose cytarabine in acute myeloid leukemia treatment: a systematic review and meta-analysis, PLoS One, 9
Dombret, 2016, An update of current treatments for adult acute myeloid leukemia, Blood, 127, 53, 10.1182/blood-2015-08-604520
Coombs, 2016, Molecular therapy for acute myeloid leukaemia, Nat. Rev. Clin. Oncol., 13, 305, 10.1038/nrclinonc.2015.210
Schuch, 2002, In vivo administration of vascular endothelial growth factor (VEGF) and its antagonist, soluble neuropilin-1, predicts a role of VEGF in the progression of acute myeloid leukemia in vivo, Blood, 100, 4622, 10.1182/blood.V100.13.4622
Padro, 2000, Increased angiogenesis in the bone marrow of patients with acute myeloid leukemia, Blood, 95, 2637, 10.1182/blood.V95.8.2637
Rodriguez-Ariza, 2011, VEGF targeted therapy in acute myeloid leukemia, Crit. Rev. Oncol. Hematol., 80, 241, 10.1016/j.critrevonc.2010.09.009
Lane, 2009, The leukemic stem cell niche: current concepts and therapeutic opportunities, Blood, 114, 1150, 10.1182/blood-2009-01-202606
Rashidi, 2015, Targeting the microenvironment in acute myeloid leukemia, Curr. Hematol. Malig. Rep., 10, 126, 10.1007/s11899-015-0255-4
Daley, 1990, Induction of chronic myelogenous leukemia in mice by the P210bcr/abl gene of the Philadelphia chromosome, Science, 247, 824, 10.1126/science.2406902
Zhang, 2013, Microenvironmental protection of CML stem and progenitor cells from tyrosine kinase inhibitors through N-cadherin and Wnt-beta-catenin signaling, Blood, 121, 1824, 10.1182/blood-2012-02-412890
Hantschel, 2012, BCR-ABL uncouples canonical JAK2-STAT5 signaling in chronic myeloid leukemia, Nat. Chem. Biol., 8, 285, 10.1038/nchembio.775
Corbin, 2011, Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity, J. Clin. Invest., 121, 396, 10.1172/JCI35721
Chu, 2011, Persistence of leukemia stem cells in chronic myelogenous leukemia patients in prolonged remission with imatinib treatment, Blood, 118, 5565, 10.1182/blood-2010-12-327437
Traer, 2012, Blockade of JAK2-mediated extrinsic survival signals restores sensitivity of CML cells to ABL inhibitors, Leukemia, 26, 1140, 10.1038/leu.2011.325
Matsunaga, 2003, Interaction between leukemic-cell VLA-4 and stromal fibronectin is a decisive factor for minimal residual disease of acute myelogenous leukemia, Nat. Med., 9, 1158, 10.1038/nm909
Zhang, 2007, Increased resistance to a farnesyltransferase inhibitor by N-cadherin expression in Bcr/Abl-P190 lymphoblastic leukemia cells, Leukemia, 21, 1189, 10.1038/sj.leu.2404667
Moslehi, 2015, Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia, J. Clin. Oncol., 33, 4210, 10.1200/JCO.2015.62.4718
Dahlen, 2016, Cardiovascular events associated with use of tyrosine kinase inhibitors in chronic myeloid leukemia: a population-based cohort study, Ann. Intern Med., 165, 161, 10.7326/M15-2306
Valent, 2015, Vascular safety issues in CML patients treated with BCR/ABL1 kinase inhibitors, Blood, 125, 901, 10.1182/blood-2014-09-594432
Mu, 2017, Codelivery of ponatinib and SAR302503 by active bone-targeted polymeric micelles for the treatment of therapy-resistant chronic myeloid leukemia, Mol. Pharm., 14, 274, 10.1021/acs.molpharmaceut.6b00872
Kuchuk, 2013, Incidence and consequences of bone metastases in lung cancer patients, J. Bone Oncol., 2, 22, 10.1016/j.jbo.2012.12.004
Croucher, 2016, Bone metastasis: the importance of the neighbourhood, Nat. Rev. Cancer, 16, 373, 10.1038/nrc.2016.44
Cohen, 2015, Inflammation mediated metastasis: immune induced epithelial-to-mesenchymal transition in inflammatory breast cancer cells, PLoS One, 10, 10.1371/journal.pone.0132710
Yu, 2014, Revisiting STAT3 signalling in cancer: new and unexpected biological functions, Nat. Rev. Cancer, 14, 736, 10.1038/nrc3818
Chang, 2013, The IL-6/JAK/Stat3 feed-forward loop drives tumorigenesis and metastasis, Neoplasia, 15, 848, 10.1593/neo.13706
Rodriguez-Barrueco, 2015, Inhibition of the autocrine IL-6-JAK2-STAT3-calprotectin axis as targeted therapy for HR-/HER2+ breast cancers, Gene. Dev., 29, 1631, 10.1101/gad.262642.115
Jiang, 2014, Poly aspartic acid peptide-linked PLGA based nanoscale particles: potential for bone-targeting drug delivery applications, Int. J. Pharm., 475, 547, 10.1016/j.ijpharm.2014.08.067
Jansen, 2010, Targeted radiotherapy of bone malignancies, Curr. Drug Discov. Technol., 7, 233, 10.2174/157016310793360675
Sou, 2007, Selective uptake of surface-modified phospholipid vesicles by bone marrow macrophages in vivo, Biomaterials, 28, 2655, 10.1016/j.biomaterials.2007.01.041
Sou, 2010, Bone marrow-targeted liposomal carriers: a feasibility study in nonhuman primates, Nanomed. (Lond), 5, 41, 10.2217/nnm.09.78
Tardi, 2009, In vivo maintenance of synergistic cytarabine:daunorubicin ratios greatly enhances therapeutic efficacy, Leuk. Res., 33, 129, 10.1016/j.leukres.2008.06.028
Tardi, 2016, Passive and semi-active targeting of bone marrow and leukemia cells using anionic low cholesterol liposomes, J. Drug Target, 24, 797, 10.1080/1061186X.2016.1184669
Zhang, 2012, A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy, Nat. Med., 18, 307, 10.1038/nm.2617
Miller, 2011, Antiangiogenic antitumor activity of HPMA copolymer-paclitaxel-alendronate conjugate on breast cancer bone metastasis mouse model, Mol. Pharm., 8, 1052, 10.1021/mp200083n
Gutbrodt, 2013, Antibody-based delivery of interleukin-2 to neovasculature has potent activity against acute myeloid leukemia, Sci. Transl. Med., 5, 10.1126/scitranslmed.3006221
Mai, 2014, Bone marrow endothelium-targeted therapeutics for metastatic breast cancer, J. Control Release, 187, 22, 10.1016/j.jconrel.2014.04.057
Zong, 2016, In vivo targeting of leukemia stem cells by directing parthenolide-loaded nanoparticles to the bone marrow niche, Leukemia, 30, 1582, 10.1038/leu.2015.343
Pan, 2002, Strategy for the treatment of acute myelogenous leukemia based on folate receptor beta-targeted liposomal doxorubicin combined with receptor induction using all-trans retinoic acid, Blood, 100, 594, 10.1182/blood.V100.2.594
Shi, 2013, Multistep targeted nano drug delivery system aiming at leukemic stem cells and minimal residual disease, Mol. Pharm., 10, 2479, 10.1021/mp4001266
Torchilin, 2000, Drug targeting, Eur. J. Pharm. Sci., 2, S81, 10.1016/S0928-0987(00)00166-4
Peer, 2007, Nanocarriers as an emerging platform for cancer therapy, Nat. Nanotechnol., 2, 751, 10.1038/nnano.2007.387
Beloqui, 2013, Biodistribution of Nanostructured Lipid Carriers (NLCs) after intravenous administration to rats: influence of technological factors, Eur. J. Pharm. Biopharm., 84, 309, 10.1016/j.ejpb.2013.01.029
Braet, 2012, AFM imaging of fenestrated liver sinusoidal endothelial cells, Micron, 43, 1252, 10.1016/j.micron.2012.02.010
Epelman, 2014, Origin and functions of tissue macrophages, Immunity, 41, 21, 10.1016/j.immuni.2014.06.013
Chavez-Santoscoy, 2012, Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles, Biomaterials, 33, 4762, 10.1016/j.biomaterials.2012.03.027
Vukman, 2013, Mannose receptor and macrophage galactose-type lectin are involved in Bordetella pertussis mast cell interaction, J. Leukoc. Biol., 94, 439, 10.1189/jlb.0313130
Wang, 2003, Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation, Nature, 421, 384, 10.1038/nature01339
Hofkens, 2011, Intravenously delivered glucocorticoid liposomes inhibit osteoclast activity and bone erosion in murine antigen-induced arthritis, J. Control Release, 152, 363, 10.1016/j.jconrel.2011.03.001
Kraft, 2014, Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems, J. Pharm. Sci., 103, 29, 10.1002/jps.23773
Goldberg, 2001, Binding of bone sialoprotein, osteopontin and synthetic polypeptides to hydroxyapatite, Connect. Tissue Res., 42, 25, 10.3109/03008200109014246
Bernards, 2008, MC3T3-E1 cell adhesion to hydroxyapatite with adsorbed bone sialoprotein, bone osteopontin, and bovine serum albumin, Colloids Surf. B Biointerfaces, 64, 236, 10.1016/j.colsurfb.2008.01.025
Gilbert, 2003, Biomimetic peptides that engage specific integrin-dependent signaling pathways and bind to calcium phosphate surfaces, J. Biomed. Mater Res. A, 67, 69, 10.1002/jbm.a.10053
Murphy, 2007, Synthesis and in vitro hydroxyapatite binding of peptides conjugated to calcium-binding moieties, Biomacromolecules, 8, 2237, 10.1021/bm070121s
Ogawa, 2013, Development of novel radiogallium-labeled bone imaging agents using oligo-aspartic acid peptides as carriers, PLoS One, 8, 10.1371/journal.pone.0084335
Wang, 2007, Osteotropic Peptide that differentiates functional domains of the skeleton, Bioconjug. Chem., 18, 1375, 10.1021/bc7002132
Yarbrough, 2010, Specific binding and mineralization of calcified surfaces by small peptides, Calcif. Tissue Int., 86, 58, 10.1007/s00223-009-9312-0
Wang, 2010, Bisphosphonate-coated BSA nanoparticles lack bone targeting after systemic administration, J. Drug Target, 18, 611, 10.3109/10611861003622560
Wang, 2003, Synthesis and evaluation of water-soluble polymeric bone-targeted drug delivery systems, Bioconjug. Chem., 14, 853, 10.1021/bc034090j
Pan, 2008, Biodistribution and pharmacokinetic studies of bone-targeting N-(2-hydroxypropyl)methacrylamide copolymer-alendronate conjugates, Mol. Pharm., 5, 548, 10.1021/mp800003u
Santini, 2006, Mechanisms of disease: preclinical reports of antineoplastic synergistic action of bisphosphonates, Nat. Clin. Pract. Oncol., 3, 325, 10.1038/ncponc0520
Lander, 2012, What does the concept of the stem cell niche really mean today?, BMC Biol., 10, 19, 10.1186/1741-7007-10-19
Zhang, 2003, Identification of the haematopoietic stem cell niche and control of the niche size, Nature, 425, 836, 10.1038/nature02041
Calvi, 2003, Osteoblastic cells regulate the haematopoietic stem cell niche, Nature, 425, 841, 10.1038/nature02040
Sheppard, 2002, Endothelial integrins and angiogenesis: not so simple anymore, J. Clin. Invest., 110, 913, 10.1172/JCI0216713
Fiedler, 1997, Vascular endothelial growth factor, a possible paracrine growth factor in human acute myeloid leukemia, Blood, 89, 1870, 10.1182/blood.V89.6.1870
Perez-Atayde, 1997, Spectrum of tumor angiogenesis in the bone marrow of children with acute lymphoblastic leukemia, Am. J. Pathol., 150, 815
Shamay, 2016, Assessing the therapeutic efficacy of VEGFR-1-targeted polymer drug conjugates in mouse tumor models, J. Control Release, 229, 192, 10.1016/j.jconrel.2016.03.024
Neri, 2005, Tumour vascular targeting, Nat. Rev. Cancer, 5, 436, 10.1038/nrc1627
Jubeli, 2012, E-selectin as a target for drug delivery and molecular imaging, J. Control Release, 158, 194, 10.1016/j.jconrel.2011.09.084
Thorpe, 2004, Vascular targeting agents as cancer therapeutics, Clin. Cancer Res., 10, 415, 10.1158/1078-0432.CCR-0642-03
Steiner, 2011, Antibody-radionuclide conjugates for cancer therapy: historical considerations and new trends, Clin. Cancer Res., 17, 6406, 10.1158/1078-0432.CCR-11-0483
Pasche, 2012, Immunocytokines: a novel class of potent armed antibodies, Drug Discov. Today, 17, 583, 10.1016/j.drudis.2012.01.007
Bernardes, 2012, A traceless vascular-targeting antibody-drug conjugate for cancer therapy, Angew. Chem. Int. Ed. Engl., 51, 941, 10.1002/anie.201106527
Schliemann, 2015, Targeting interleukin-2 to the bone marrow stroma for therapy of acute myeloid leukemia relapsing after allogeneic hematopoietic stem cell transplantation, Cancer Immunol. Res., 3, 547, 10.1158/2326-6066.CIR-14-0179
Chen, 2000, In vitro and in vivo production of vascular endothelial growth factor by chronic lymphocytic leukemia cells, Blood, 96, 3181, 10.1182/blood.V96.9.3181
Krauth, 2004, Immunohistochemical detection of VEGF in the bone marrow of patients with chronic myeloid leukemia and correlation with the phase of disease, Am. J. Clin. Pathol., 121, 473, 10.1309/3JLTFNNEDQHB4A0P
Eigentler, 2011, A dose-escalation and signal-generating study of the immunocytokine L19-IL2 in combination with dacarbazine for the therapy of patients with metastatic melanoma, Clin. Cancer Res., 17, 7732, 10.1158/1078-0432.CCR-11-1203
Johannsen, 2010, The tumour-targeting human L19-IL2 immunocytokine: preclinical safety studies, phase I clinical trial in patients with solid tumours and expansion into patients with advanced renal cell carcinoma, Eur. J. Cancer, 46, 2926, 10.1016/j.ejca.2010.07.033
Bevilacqua, 1993, Endothelial-leukocyte adhesion molecules, Annu. Rev. Immunol., 11, 767, 10.1146/annurev.iy.11.040193.004003
Zarbock, 2011, Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow, Blood, 118, 6743, 10.1182/blood-2011-07-343566
Winkler, 2012, Vascular niche E-selectin regulates hematopoietic stem cell dormancy, self renewal and chemoresistance, Nat. Med., 18, 1651, 10.1038/nm.2969
Sipkins, 2005, In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment, Nature, 435, 969, 10.1038/nature03703
Mann, 2010, Identification of thioaptamer ligand against E-selectin: potential application for inflamed vasculature targeting, PLoS One, 5, 10.1371/journal.pone.0013050
Konopleva, 2011, Leukemia stem cells and microenvironment: biology and therapeutic targeting, J. Clin. Oncol., 29, 591, 10.1200/JCO.2010.31.0904
Korn, 2017, Myeloid malignancies and the microenvironment, Blood, 129, 811, 10.1182/blood-2016-09-670224
Ratnam, 2003, Receptor induction and targeted drug delivery: a new antileukaemia strategy, Expert Opin. Biol. Ther., 3, 563, 10.1517/14712598.3.4.563
Lim, 2010, Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:daunorubicin formulation, in bone marrow xenografts, Leuk. Res., 34, 1214, 10.1016/j.leukres.2010.01.015
Gordon, 2016, CPX-351 exhibits potent and direct ex vivo cytotoxicity against AML blasts with enhanced efficacy for cells harboring the FLT3-ITD mutation, Leuk. Res., 53, 39, 10.1016/j.leukres.2016.12.002
Kim, 2011, Liposomal encapsulation of a synergistic molar ratio of cytarabine and daunorubicin enhances selective toxicity for acute myeloid leukemia progenitors as compared to analogous normal hematopoietic cells, Exp. Hematol., 39, 741, 10.1016/j.exphem.2011.04.001
U.S. Food & Drug Administration, 2017
Sun, 2014, Oligonucleotide aptamers: new tools for targeted cancer therapy, Mol. Ther. Nucleic Acids, 3, 10.1038/mtna.2014.32
Shum, 2013, Nucleic acid aptamers as potential therapeutic and diagnostic agents for lymphoma, J. Cancer Ther., 4, 872, 10.4236/jct.2013.44099
Shangguan, 2006, Aptamers evolved from live cells as effective molecular probes for cancer study, Proc. Natl. Acad. Sci. U. S. A., 103, 11838, 10.1073/pnas.0602615103
Duda, 2011, CXCL12 (SDF1alpha)-CXCR4/CXCR7 pathway inhibition: an emerging sensitizer for anticancer therapies?, Clin. Cancer Res., 17, 2074, 10.1158/1078-0432.CCR-10-2636
Hoellenriegel, 2014, The Spiegelmer NOX-A12, a novel CXCL12 inhibitor, interferes with chronic lymphocytic leukemia cell motility and causes chemosensitization, Blood, 123, 1032, 10.1182/blood-2013-03-493924
Gattoni-Celli, 2009, Overexpression of nucleolin in engrafted acute myelogenous leukemia cells, Am. J. Hematol., 84, 535, 10.1002/ajh.21461
Mongelard, 2010, AS-1411, a guanosine-rich oligonucleotide aptamer targeting nucleolin for the potential treatment of cancer, including acute myeloid leukemia, Curr. Opin. Mol. Ther., 12, 107
Kikushige, 2010, TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells, Cell Stem Cell., 7, 708, 10.1016/j.stem.2010.11.014
Jan, 2011, Prospective separation of normal and leukemic stem cells based on differential expression of TIM3, a human acute myeloid leukemia stem cell marker, Proc. Natl. Acad. Sci. U. S. A., 108, 5009, 10.1073/pnas.1100551108
Hira, 2017, Novel therapeutic strategies to target leukemic cells that hijack compartmentalized continuous hematopoietic stem cell niches, Biochim. Biophys. Acta, 1868, 183
Miao, 2017, Nanoformulations for combination or cascade anticancer therapy, Adv. Drug Deliv. Rev., 115, 3, 10.1016/j.addr.2017.06.003
Hu, 2016, Recent advances of cocktail chemotherapy by combination drug delivery systems, Adv. Drug Deliv. Rev., 98, 19, 10.1016/j.addr.2015.10.022