The diversity and biogeography of soil bacterial communities

Noah Fierer1, Robert B. Jackson1
1Department of Biology and Nicholas School of the Environment and Earth Sciences, Duke University, Durham, NC 27708

Tóm tắt

For centuries, biologists have studied patterns of plant and animal diversity at continental scales. Until recently, similar studies were impossible for microorganisms, arguably the most diverse and abundant group of organisms on Earth. Here, we present a continental-scale description of soil bacterial communities and the environmental factors influencing their biodiversity. We collected 98 soil samples from across North and South America and used a ribosomal DNA-fingerprinting method to compare bacterial community composition and diversity quantitatively across sites. Bacterial diversity was unrelated to site temperature, latitude, and other variables that typically predict plant and animal diversity, and community composition was largely independent of geographic distance. The diversity and richness of soil bacterial communities differed by ecosystem type, and these differences could largely be explained by soil pH ( r 2 = 0.70 and r 2 = 0.58, respectively; P < 0.0001 in both cases). Bacterial diversity was highest in neutral soils and lower in acidic soils, with soils from the Peruvian Amazon the most acidic and least diverse in our study. Our results suggest that microbial biogeography is controlled primarily by edaphic variables and differs fundamentally from the biogeography of “macro” organisms.

Từ khóa


Tài liệu tham khảo

10.1126/science.1071698

10.1126/science.1093857

10.1073/pnas.95.12.6578

Beijerinck M. (1913) De Infusies en de Ontdekking der Backterien Jaarboek van de Koninklijke Akademie v. Wetenschappen (Muller Amsterdam).

10.1016/j.femsec.2004.03.013

10.1098/rspb.2003.2549

10.1126/science.276.5313.734

10.1016/S0169-5347(02)02571-5

Schimel, J. (1995) in Arctic and Alpine Biodiversity, Ecological Studies, eds. Chapin, F. & Korner, F. (Springer, New York), Vol. 113, pp. 239–254.

Balser T. Kinzig A. & Firestone M. (2002) in The Functional Consequences of Biodiversity eds. Kinzig A. Pacala S. & Tilman D. (Princeton Univ. Press Princeton) pp. 265–293.

10.1128/AEM.68.6.3035-3045.2002

10.1126/science.1107851

Buckley D. & Schmidt T. (2002) in Biodiversity of Microbial Life eds. Staley J. & Reysenbach A. (Wiley New York) pp. 183–208.

10.1038/nature03034

10.1128/AEM.64.5.1620-1627.1998

10.1128/AEM.66.12.5448-5456.2000

10.1890/03-8006

10.1038/35012228

10.1126/science.1072380

10.1111/j.1574-6941.2003.tb01040.x

Barthlott, W., Biedinger, N., Braun, G., Feig, F., Kier, G. & Mutke, J. (1999) Acta Bot. Fennica 162, 103–110.

10.1023/A:1024593414624

10.1126/science.1067335

10.1046/j.1365-2699.2001.00563.x

Christensen, H., Olsen, R. A. & Bakken, L. R. (1995) Microb. Ecol. 29, 49–62.

Madigan M. Martinko J. & Parker J. (1997) Brock Biology of Microorganisms (Prentice Hall Upper Saddle River NJ).

10.1023/A:1015619921119

10.1016/S0038-0717(03)00154-8

10.2307/3761420

10.2307/3546568

10.1038/nature03073

Rosenzweig M. (1995) Species Diversity in Space and Time (Cambridge Univ. Press Cambridge U.K.).

10.2307/210739

10.1111/j.1574-6941.2000.tb00717.x

10.1046/j.1462-2920.2000.00081.x

10.1128/aem.63.11.4516-4522.1997

10.1128/AEM.67.1.190-197.2001

10.1128/AEM.69.1.320-326.2003

10.1128/AEM.66.7.2943-2950.2000

10.1128/AEM.70.9.5057-5065.2004

10.1128/aem.63.12.4993-4995.1997

Reysenbach A. & Pace N. (1995) in Archaea: A Laboratory Manual ed. Robb F. (Cold Spring Harbor Lab. Press Cold Spring Harbor NY) pp. 101–107.

McCune B. & Mefford M. (1999) pc-ord (MJM Software Gleneden Beach OR).

Legendre P. & Legendre L. (1998) Numerical Ecology (Elsevier Amsterdam).

systat (2000) (SPSS Evanston IL).

Burnham K. & Anderson D. (2002) Model Selection and Inference: A Practical Information-Theoretic Approach (Springer NY).