DualSPHysics: Open-source parallel CFD solver based on Smoothed Particle Hydrodynamics (SPH)

Computer Physics Communications - Tập 187 - Trang 204-216 - 2015
A.J.C. Crespo1, J.M. Domínguez1, B.D. Rogers2, M. Gómez-Gesteira1, S. Longshaw2, R. Canelas3, R. Vacondio4, A. Barreiro1, O. García-Feal1
1EPHYSLAB Environmental Physics Laboratory, Universidade de Vigo, Spain
2Modelling and Simulation Centre (MaSC), School of Mechanical, Aerospace and Civil Engineering (MACE), University of Manchester, United Kingdom
3CEHIDRO, Instituto Superior Tecnico, Lisbon, Portugal
4Department of Civil Environmental Engineering, University of Parma, Parma, Italy

Tài liệu tham khảo

Gómez-Gesteira, 2010, State-of-the-art of classical SPH for free-surface flows, J. Hydraulic Res., 48, 6, 10.1080/00221686.2010.9641242 Gómez-Gesteira, 2012, SPHysics—development of a free-surface fluid solver- Part 1: Theory and formulations, Comput. Geosci., 48, 289, 10.1016/j.cageo.2012.02.029 Gómez-Gesteira, 2012, SPHysics—development of a free-surface fluid solver—Part 2: Efficiency and test cases, Comput. Geosci., 48, 300, 10.1016/j.cageo.2012.02.028 Dalrymple, 2006, Numerical modeling of water waves with the SPH method, Coastal Eng., 53, 141, 10.1016/j.coastaleng.2005.10.004 Crespo, 2008, Modeling dam break behavior over a wet bed by a SPH technique, J. Waterway, Port, Coastal Ocean Eng., 134, 313, 10.1061/(ASCE)0733-950X(2008)134:6(313) Gómez-Gesteira, 2004, Using a 3D SPH method for wave impact on a tall structure, J. Waterway, Port, Coastal Ocean Eng., 130, 63, 10.1061/(ASCE)0733-950X(2004)130:2(63) Rogers, 2010, Simulation of caisson breakwater movement using SPH, J. Hydraulic Res., 48, 135, 10.1080/00221686.2010.9641254 Vacondio, 2012, A correction for balancing discontinuous bed slopes in two-dimensional smoothed particle hydrodynamics shallow water modelling, Internat. J. Numer. Methods Fluids, 71, 850, 10.1002/fld.3687 Vacondio, 2013, Shallow water SPH for flooding with dynamic particle coalescing and splitting, Adv. Water Resour., 58, 10, 10.1016/j.advwatres.2013.04.007 Herault, 2010, SPH on GPU with CUDA, J. Hydraulic Res., 48, 74, 10.1080/00221686.2010.9641247 Dominguez, 2013, Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method, Comput. Phys. Comm., 184, 617, 10.1016/j.cpc.2012.10.015 Crespo, 2011, GPUs, a new tool of acceleration in CFD: Efficiency and reliability on smoothed particle hydrodynamics methods, PLoS ONE, 6, e20685, 10.1371/journal.pone.0020685 Barreiro, 2013, Smoothed particle hydrodynamics for coastal engineering problems, Comput. Struct., 120, 96, 10.1016/j.compstruc.2013.02.010 Altomare, 2014, Numerical modelling of armour block sea breakwater with smoothed particle hydrodynamics, Comput. Struct., 130, 34, 10.1016/j.compstruc.2013.10.011 Vacondio, 2013, 3D SPH numerical simulation of the wave generated by the Vajont rockslide, Adv. Water Resour., 59, 146, 10.1016/j.advwatres.2013.06.009 Cherfils, 2012, Rivoalen, JOSEPHINE: A parallel SPH code for free-surface flows, Comput. Phys. Comm., 183, 1468, 10.1016/j.cpc.2012.02.007 http://www.gpusph.org/ (accessed 23.07.2014). http://canal.etsin.upm.es/aquagpusph/ (accessed 23.07.2014). http://isph.sourceforge.net/ (accessed 23.07.2014). http://www.mpa-garching.mpg.de/gadget/ (date access 23-07-2014). https://code.google.com/p/pysph/ (accessed 23.07.2014). http://www.sph-flow.com/ (accessed 23.07.2014). http://www.simpartix.com/ (accessed 23.07.2014). http://www.itm.uni-stuttgart.de/research/pasimodo/pasimodo_en.php (accessed 23.07.2014). Monaghan, 1992, Smoothed particle hydrodynamics, Annu. Rev. Astron. Astrophys., 30, 543, 10.1146/annurev.aa.30.090192.002551 Liu, 2003 Monaghan, 2005, Smoothed particle hydrodynamics, Rep. Progr. Phys., 68, 1703, 10.1088/0034-4885/68/8/R01 Violeau, 2012 Monaghan, 2000, SPH without tensile instability, J. Comput. Phys., 159, 290, 10.1006/jcph.2000.6439 Wendland, 1995, Piecewiese polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math., 4, 389, 10.1007/BF02123482 Lo, 2002, Simulation of near-shore solitary wave mechanics by an incompressible SPH method, Appl. Ocean Res., 24, 275, 10.1016/S0141-1187(03)00002-6 Gotoh, 2001, Subparticle-scale model for the MPS method-lagrangian flow model for hydraulic engineering, Comput. Fluid Dynam. J., 9, 339 Molteni, 2009, A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH, Comput. Phys. Comm., 180, 861, 10.1016/j.cpc.2008.12.004 Antuono, 2012, Numerical diffusive terms in weakly-compressible SPH schemes, Comput. Phys. Comm., 183, 10.1016/j.cpc.2012.07.006 Monaghan, 1994, Simulating free surface flows with SPH, J. Comput. Phys., 110, 399, 10.1006/jcph.1994.1034 Monaghan, 1999, Gravity currents descending a ramp in a stratified tank, J. Fluid Mech., 379, 39, 10.1017/S0022112098003280 Batchelor, 1974 Monaghan, 1989, On the problem of penetration in particle methods, J. Comput. Phys., 82, 1, 10.1016/0021-9991(89)90032-6 Verlet, 1967, Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules, Phys. Rev., 159, 98, 10.1103/PhysRev.159.98 Leimkuhler, 1996 Monaghan, 1999, Solitary waves on a Cretan beach, J. Waterway, Port Coastal Ocean Eng., 125, 145, 10.1061/(ASCE)0733-950X(1999)125:3(145) Crespo, 2007, Boundary conditions generated by dynamic particles in SPH methods, CMC: Comput., Mater. Contin., 5, 173 Monaghan, 2003, Fluid motion generated by impact, J. Waterway, Port, Coastal Ocean Eng., 129, 250, 10.1061/(ASCE)0733-950X(2003)129:6(250) Dominguez, 2011, Neighbour lists in smoothed particle hydrodynamics, Internat. J. Numer. Methods Fluids, 67, 2026, 10.1002/fld.2481 Purcell, 2002, Ray tracing on programmable graphics hardware, ACM Trans. Graphics, 21, 703, 10.1145/566654.566640 Domínguez, 2013, New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters, Comput. Phys. Comm., 184, 1848, 10.1016/j.cpc.2013.03.008 J.M. Domínguez, A.J.C. Crespo, A. Barreiro, M. Gómez-Gesteira, B.D. Rogers, Efficient implementation of double precision in GPU computing to simulate realistic cases with high resolution, in: Proceedings of the 9th SPHERIC, 2014. Vacondio, 2013, Variable resolution for SPH: a dynamic particle coalescing and splitting scheme, Comput. Methods Appl. Mech. Engrg., 256, 132, 10.1016/j.cma.2012.12.014 Fourtakas, 2013, Modelling sediment suspension in industrial tanks using SPH, La Houille Blanche, 2, 39, 10.1051/lhb/2013014 A. Mokos, B.D. Rogers, P.K. Stansby, J.M. Domínguez, A multi-phase particle shifting algorithm for SPH simulations for violent hydrodynamics on a GPU, in: Proceedings of the 9th SPHERIC, 2014. G. Fourtakas, J.M. Domínguez, R. Vacondio, A. Nasar, B.D. Rogers, Local Uniform STencil (LUST) Boundary Conditions for 3-D Irregular Boundaries in DualSPHysics, in: Proceedings of the 9th SPHERIC, 2014. R. Canelas, R.M.L. Ferreira, J.M. Domínguez, A.J.C. Crespo, Modelling of wave impacts on harbour structures and objects with SPH and DEM, in: Proceedings of the 9th SPHERIC, 2014. S.M. Longshaw, B.D. Rogers, P.K. Stansby, Whale to turbine impact using the GPU based SPH-LSM method, in: Proceedings of the 9th SPHERIC, 2014. C. Altomare, T. Suzuki, J.M. Domínguez, A.J.C. Crespo, M. Gómez-Gesteira, Coupling between SWASH and SPH for real coastal problems, in: Proceedings of the 9th SPHERIC, 2014.