Crimean-Congo Hemorrhagic Fever Virus (CCHFV): A Silent but Widespread Threat

Current Tropical Medicine Reports - Tập 8 - Trang 141-147 - 2021
Paul A. Kuehnert1, Christopher P. Stefan1, Catherine V. Badger2, Keersten M. Ricks1
1Diagnostic Systems Division, US Army Medical Research Institute of Infectious Diseases, Frederick, USA
2Virology Division, US Army Medical Research Institute of Infectious Diseases, Frederick, USA

Tóm tắt

This review is aimed at highlighting recent research and articles on the complicated relationship between virus, vector, and host and how biosurveillance at each level informs disease spread and risk. While human cases of CCHFV and tick identification in non-endemic areas in 2019–2020 were reported to sites such as ProMed, there is a gap in recent published literature on these and broader CCHFV surveillance efforts from the late 2010s. A review of the complex aspects of CCHFV maintenance in the environment coupled with high fatality rate and lack of vaccines and therapeutics warrants the need for a One-Health approach toward detection and increased biosurveillance programs for CCHFV.

Tài liệu tham khảo

Hawman DW, Feldmann H. Recent advances in understanding Crimean-Congo hemorrhagic fever virus. F1000Res. 2018;7:F1000 Faculty Rev-715. Hoogstraal H. Review article1: the epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa23. J Med Entomol. 1979;15(4):307–417. Casals J. Antigenic similarity between the virus causing Crimean hemorrhagic fever and Congo virus. Proc Soc Exp Biol Med. 1969;131(1):233–6. Bente DA, Forrester NL, Watts DM, McAuley AJ, Whitehouse CA, Bray M. Crimean-Congo hemorrhagic fever: history, epidemiology, pathogenesis, clinical syndrome and genetic diversity. Antivir Res. 2013;100(1):159–89. Raju R, Kolakofsky D. The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base paired. J Virol. 1989;63(1):122–8. Schmaljohn C. Bunyaviridae: the viruses and their replication. Fields Virol. 2001. Bertolotti-Ciarlet A, Smith J, Strecker K, Paragas J, Altamura LA, McFalls JM, et al. Cellular localization and antigenic characterization of Crimean-Congo hemorrhagic fever virus glycoproteins. J Virol. 2005;79(10):6152–61. Messina JP, Pigott DM, Golding N, Duda KA, Brownstein JS, Weiss DJ, et al. The global distribution of Crimean-Congo hemorrhagic fever. Trans R Soc Trop Med Hyg. 2015;109(8):503–13. Whitehouse CA. Crimean–Congo hemorrhagic fever. Antivir Res. 2004;64(3):145–60. Burt FJ, Swanepoel R, Shieh W-J, Smith JF. Immunohistochemical and in situ localization of Crimean-Congo hemorrhagic fever (CCHF) virus in human tissues and implications for CCHF pathogenesis. Arch Pathol Lab Med. 1997;121(8):839. Hasanoglu I, Guner R, Carhan A, Tufan KZ, Caglayik YD, Yilmaz GR, et al. Dynamics of viral load in Crimean Congo hemorrhagic fever. J Med Virol. 2018;90(4):639–43. Shepherd A, Swanepoel R, Leman P. Antibody response in Crimean-Congo hemorrhagic fever. Rev Infect Dis. 1989;11(Supplement_4):S801–S6. Gale P, Stephenson B, Brouwer A, Martinez M, De la Torre A, Bosch J, et al. Impact of climate change on risk of incursion of Crimean-Congo haemorrhagic fever virus in livestock in Europe through migratory birds. J Appl Microbiol. 2012;112(2):246–57. Maltezou HC, Papa A. Crimean–Congo hemorrhagic fever: risk for emergence of new endemic foci in Europe? Travel Med Infect Dis. 2010;8(3):139–43. Estrada-Peña A, de la Fuente J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir Res. 2014;108:104–28. Randolph SE, Rogers DJ. Ecology of tick-borne disease and the role of climate. In: Crimean-Congo hemorrhagic fever: Springer; 2007. p. 167–86. Xia H, Beck AS, Gargili A, Forrester N, Barrett AD, Bente DA. Transstadial transmission and long-term association of Crimean-Congo hemorrhagic fever virus in ticks shapes genome plasticity. Sci Rep. 2016;6(1):1–12. Hua BL, Scholte FE, Ohlendorf V, Kopp A, Marklewitz M, Drosten C, et al. A single mutation in Crimean-Congo hemorrhagic fever virus discovered in ticks impairs infectivity in human cells. Elife. 2020;9:e50999. Gargili A, Estrada-Peña A, Spengler JR, Lukashev A, Nuttall PA, Bente DA. The role of ticks in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus: a review of published field and laboratory studies. Antivir Res. 2017;144:93–119 Excellent review on the importance of understanding ticks when it comes to CCHFV transmission. Turell MJ. Role of ticks in the transmission of Crimean-Congo hemorrhagic fever virus. In: Crimean-Congo Hemorrhagic Fever: Springer; 2007. p. 143–54. Spengler JR, Estrada-Peña A, Garrison AR, Schmaljohn C, Spiropoulou CF, Bergeron É, et al. A chronological review of experimental infection studies of the role of wild animals and livestock in the maintenance and transmission of Crimean-Congo hemorrhagic fever virus. Antivir Res. 2016;135:31–47. Orkun Ö, Karaer Z, Çakmak A, Nalbantoğlu S. Crimean-Congo hemorrhagic fever virus in ticks in Turkey: a broad range tick surveillance study. Infect Genet Evol. 2017;52:59–66. Head J, Bumburidi Y, Mirzabekova G, Rakhimov K, Dzhumankulov M, Salyer S, et al. Risk factors for and seroprevalence of tickborne zoonotic diseases among livestock owners, Kazakhstan. Emerg Infect Dis J. 2020;26(1):70–80. Greiner AL, Mamuchishvili N, Kakutia N, Stauffer K, Geleishvili M, Chitadze N, et al. Crimean-Congo hemorrhagic fever knowledge, attitudes, practices, risk factors, and seroprevalence in rural Georgian villages with known transmission in 2014. PLoS One. 2016;11(6):e0158049. Ergönül Ö. Crimean-Congo haemorrhagic fever. Lancet Infect Dis. 2006;6(4):203–14. Fillatre P, Revest M, Tattevin P. Crimean-Congo hemorrhagic fever: an update. Med Mal Infect. 2019;49(8):574–85. Spengler JR, Bente DA, Bray M, Burt F, Hewson R, Korukluoglu G, et al. Second international conference on Crimean-Congo hemorrhagic fever. Antivir Res. 2018;150:137–47. Nasirian H. New aspects about Crimean-Congo hemorrhagic fever (CCHF) cases and associated fatality trends: a global systematic review and meta-analysis. Comp Immunol Microbiol Infect Dis. 2020;69:101429. Leblebicioglu H, Sunbul M, Memish ZA, Al-Tawfiq JA, Bodur H, Ozkul A, et al. Consensus report: preventive measures for Crimean-Congo hemorrhagic fever during Eid-al-Adha festival. Int J Infect Dis. 2015;38:9–15. Tsergouli K, Karampatakis T, Haidich A, Metallidis S, Papa A. Nosocomial infections caused by Crimean–Congo haemorrhagic fever virus. J Hosp Infect. 2020;105(1):43–52. Leblebicioglu H, Ozaras R, Fletcher TE, Beeching NJ. Crimean-Congo haemorrhagic fever in travellers: a systematic review. Travel Med Infect Dis. 2016;14(2):73–80. Yousaf MZ, Ashfaq UA, Anjum KM, Fatima S. Crimean-Congo hemorrhagic fever (CCHF) in Pakistan: the “bell” is ringing silently. Crit Rev Eukaryot Gene Expr. 2018;28(2):93–100. Sorvillo TE, Rodriguez SE, Hudson P, Carey M, Rodriguez LL, Spiropoulou CF, et al. Towards a sustainable one health approach to crimean–congo hemorrhagic fever prevention: focus areas and gaps in knowledge. Trop Med Infect Dis. 2020;5(3):113 One-Health approach to CCHFV detection and prevention. Spengler JR, Bergeron E, Rollin PE. Seroepidemiological studies of Crimean-Congo hemorrhagic fever virus in domestic and wild animals. PLoS Negl Trop Dis. 2016;10(1):e0004210. Okely M, Anan R, Gad-Allah S, Samy AM. Mapping the environmental suitability of etiological agent and tick vectors of Crimean-Congo hemorrhagic fever. Acta Trop. 2020;203:105319. Estrada-Peña A, Sánchez N, Estrada-Sánchez A. An assessment of the distribution and spread of the tick Hyalomma marginatum in the western Palearctic under different climate scenarios. Vector Borne Zoonotic Dis. 2012;12(9):758–68. Hoogstraal H. The epidemiology of tick-borne Crimean-Congo hemorrhagic fever in Asia, Europe, and Africa. J Med Entomol. 1979;15(4):307–417. Maiga O, Sas MA, Rosenke K, Kamissoko B, Mertens M, Sogoba N, et al. Serosurvey of Crimean–Congo hemorrhagic fever virus in cattle, Mali, West Africa. Am J Trop Med Hyg. 2017;96(6):1341–5. Mertens M, Vatansever Z, Mrenoshki S, Krstevski K, Stefanovska J, Djadjovski I, et al. Circulation of Crimean-Congo hemorrhagic fever virus in the former Yugoslav Republic of Macedonia revealed by screening of cattle sera using a novel enzyme-linked immunosorbent assay. PLoS Negl Trop Dis. 2015;9(3):e0003519. Christova I, Panayotova E, Groschup MH, Trifonova I, Tchakarova S, Sas MA. High seroprevalence for Crimean–Congo haemorrhagic fever virus in ruminants in the absence of reported human cases in many regions of Bulgaria. Exp Appl Acarol. 2018;75(2):227–34. Goedhals D, Paweska JT, Burt FJ. Long-lived CD8+ T cell responses following Crimean-Congo haemorrhagic fever virus infection. PLoS Negl Trop Dis. 2017;11(12):e0006149. Hawman DW, Meade-White K, Haddock E, Habib R, Scott D, Thomas T, et al. Crimean-Congo hemorrhagic fever mouse model recapitulating human convalescence. J Virol. 2019;93(18):e00554–19. Garrison AR, Smith DR, Golden JW. Animal models for Crimean-Congo hemorrhagic fever human disease. Viruses. 2019;11(7):590. Rabinowitz P, Gordon Z, Chudnov D, Wilcox M, Odofin L, Liu A, et al. Animals as sentinels of bioterrorism agents. Emerg Infect Dis. 2006;12(4):647–52. Raabe VN. Diagnostic testing for Crimean-Congo hemorrhagic fever. J Clin Microbiol. 2020;58(4). Minogue TD, Koehler JW, Stefan CP, Conrad TA. Next-generation sequencing for biodefense: biothreat detection, forensics, and the clinic. Clin Chem. 2019;65(3):383–92. Spengler JR, Bergeron É, Spiropoulou CF. Crimean-Congo hemorrhagic fever and expansion from endemic regions. Curr Opin Virol. 2019;34:70–8 Highlights disease spread from endemic regions and the need for increased surveillance. Palomar AM, Portillo A, Santibáñez S, García-Álvarez L, Muñoz-Sanz A, Márquez FJ, et al. Molecular (ticks) and serological (humans) study of Crimean-Congo hemorrhagic fever virus in the Iberian Peninsula, 2013–2015. Enferm Infecc Microbiol Clin. 2017;35(6):344–7. de Arellano ER, Hernández L, Goyanes MJ, Arsuaga M, Cruz AF, Negredo A, et al. Phylogenetic characterization of Crimean-Congo hemorrhagic fever virus, Spain. Emerg Infect Dis. 2017;23(12):2078–80. Mathison BA, Gerth WJ, Pritt BS, Baugh S. Introduction of the exotic tick Hyalomma truncatum on a human with travel to Ethiopia: a case report. Ticks Tick-Borne Dis. 2015;6(2):152–4. Hoogstraal H. Changing patterns of tickborne diseases in modern society. Annu Rev Entomol. 1981;26(1):75–99. Lindeborg M, Barboutis C, Ehrenborg C, Fransson T, Jaenson TG, Lindgren P-E, et al. Migratory birds, ticks, and Crimean-Congo hemorrhagic fever virus. Emerg Infect Dis. 2012;18(12):2095–7. Palomar AM, Portillo A, Santibáñez P, Mazuelas D, Arizaga J, Crespo A, et al. Crimean-Congo hemorrhagic fever virus in ticks from migratory birds, Morocco. Emerg Infect Dis. 2013;19(2):260–3. Mancuso E, Toma L, Polci A, d’Alessio SG, Di Luca M, Orsini M, et al. Crimean-Congo hemorrhagic fever virus genome in tick from migratory bird, Italy. Emerg Infect Dis. 2019;25(7):1418–20. De Liberato C, Frontoso R, Magliano A, Montemaggiori A, Autorino GL, Sala M, et al. Monitoring for the possible introduction of Crimean-Congo haemorrhagic fever virus in Italy based on tick sampling on migratory birds and serological survey of sheep flocks. Prev Vet Med. 2018;149:47–52. Swanepoel R, Leman P, Burt F, Jardine J, Verwoerd D, Capua I, et al. Experimental infection of ostriches with Crimean–Congo haemorrhagic fever virus. Epidemiol Infect. 1998;121(2):427–32. Ostfeld RS, Brunner JL. Climate change and ixodes tick-borne diseases of humans. Philos Trans R Soc B Biol Sci. 2015;370(1665):20140051. Bouchard C, Dibernardo A, Koffi J, Wood H, Leighton P, Lindsay L. Climate change and infectious diseases: the challenges: N increased risk of tick-borne diseases with climate and environmental changes. Can Commun Dis Rep. 2019;45(4):83–9.