Structural, elastic and optoelectronic properties of the hydrogen based perovskite compounds: Ab-initio study

Chinese Journal of Physics - Tập 56 - Trang 1-9 - 2018
Farida Hamioud1, A.A. Mubarak1
1Physics Department Rabigh College of Science and Arts, King Abdulaziz University, Jeddah, Saudi Arabia

Tài liệu tham khảo

Rusman, 2016, A review on the current progress of metal hydrides material for solid-state hydrogen storage applications, Int. J. Hydrogen Energy, 41, 12108, 10.1016/j.ijhydene.2016.05.244 Bouhadda, 2013, Elastic properties of perovskite-type hydride NaMgH3 for hydrogen storage, Int. J. Hydrogen Energy, 38, 1484, 10.1016/j.ijhydene.2012.11.047 Jain, 2010, Hydrogen storage in Mg: a most promising material, Int. J. Hydrogen Energy, 35, 5133, 10.1016/j.ijhydene.2009.08.088 Mubarak, 2016, The elastic, electronic and magnetism structure of the MAl and M3Al (M=Fe and Ni) alloy with and without hydrogen atoms, J. Magn. Magn. Mater., 401, 816, 10.1016/j.jmmm.2015.11.015 Mubarak, 2013, Effects of hydrogen adsorption on the electronic and magnetic structures for variant terminations of NbRu (001) and M/NbRu (001) surfaces (M=Fe, Ni), J. Magn. Magn. Mater., 335, 131, 10.1016/j.jmmm.2013.02.011 Reshak, 2015, NaMgH3 a perovskite-type hydride as advanced hydrogen storage systems: electronic structure features, Int. J. Hydrogen Energy, 40, 16383, 10.1016/j.ijhydene.2015.10.030 Sakintuna, 2007, Metal hydride materials for solid hydrogen storage: a review, Int. J. Hydrogen Energy, 32, 1121, 10.1016/j.ijhydene.2006.11.022 Ghebouli, 2012, Theoretical prediction of the structural, elastic, electronic, optical and thermal properties of the cubic perovskites CsXF3 (X = Ca, Sr and Hg) under pressure effect, Solid State Sci., 14, 903, 10.1016/j.solidstatesciences.2012.04.019 Hamioud, 2016, Ab initio investigation of the structural, electronic, magnetic and optical properties of the perovskite TlMnX3 (X = F, Cl) compounds, Int. J. Modern Phys. B, 30, 10.1142/S0217979216500314 Murtaza Hayatullah, 2014, Structural, chemical bonding, electronic and magnetic properties of KMF3 (M = Mn, Fe, Co, Ni) compounds, Comput. Mater. Sci., 85, 402, 10.1016/j.commatsci.2013.12.054 A.A. Mubarak, The first-principle study of the electronic, optical and thermoelectric properties of XTiO3 (X = Ca, Sr and Ba) compounds, Int. J. Modern Phys. B, 0 1650141. Mubarak, 2014, Ab initio study of the structural, electronic and optical properties of the fluoropervskite SrXF3 (X = Li, Na, K and Rb) compounds, Comput. Mater. Sci., 81, 478, 10.1016/j.commatsci.2013.08.055 Mubarak, 2012, The electronic and optical properties of the fluoroperovskite BaXF3 (X = Li, Na, K, and Rb) compounds, Comput. Mater. Sci., 59, 6, 10.1016/j.commatsci.2012.02.020 Bouhemadou, 2007, Ab initio study of the structural, elastic, electronic and optical properties of the antiperovskite SbNMg3, Comput. Mater. Sci., 39, 803, 10.1016/j.commatsci.2006.10.003 Sato, 2005, Hydrides with the perovskite structure: general bonding and stability considerations and the new representative CaNiH3, J. Solid State Chem., 178, 3381, 10.1016/j.jssc.2005.08.026 Komiya, 2008, Synthesis and decomposition of perovskite-type hydrides, MMgH3 (M = Na, K, Rb), J. Alloys Compd., 453, 157, 10.1016/j.jallcom.2006.11.116 Ghebouli, 2011, Structural, elastic, electronic, optical and thermodynamic properties of KMgH3, Solid State Sci., 13, 647, 10.1016/j.solidstatesciences.2010.11.046 Santhosh, 2015, First principles study of structural stability, electronic structure and mechanical properties of alkali beryllium hydrides ABeH3 (A=K, Rb, Cs), J. Phys. Chem. Solids, 81, 34, 10.1016/j.jpcs.2015.01.013 Ikeda, 2006, Formation of perovskite-type hydrides and thermal desorption processes in Ca–T–H (T = 3d transition metals), Scr. Mater., 55, 827, 10.1016/j.scriptamat.2006.07.016 Takeshita, 2002, Disproportionation of CaNi3 hydride: formation of new hydride, CaNiH3, J. Alloys Compd., 333, 266, 10.1016/S0925-8388(01)01739-X K.S.P. Blaha, G.K.H. Madsen, D. Kvasnika, J. Luitz, WIEN2k, Technical Universität Wien, 2001, ISBN 3-9501031-1-2. Hohenberg, 1964, Inhomogeneous Electron Gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Koelling, 1977, A technique for relativistic spin-polarised calculations, J. Phys. C Solid State Phys., 10, 3107, 10.1088/0022-3719/10/16/019 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Erskine, 1973, Magneto-optic Kerr effect in Ni, Co, and Fe, Phys. Rev. Lett., 30, 1329, 10.1103/PhysRevLett.30.1329 C.-e.M. Jamal, http://www.wien2k.at/reg_user/unsupported/2012. Murnaghan, 1944, Proc. Natl. Acad. Sci. U.S.A., 30, 244, 10.1073/pnas.30.9.244 Mubarak, 2014, Hydrogen adsorption on β-TiAl (001) and Ni/TiAl (001) surfaces, Surf. Rev. Lett., 21, 10.1142/S0218625X14500346 Wang, 1993, Crystal instabilities at finite strain, Phys. Rev. Lett., 71, 4182, 10.1103/PhysRevLett.71.4182 Rached, 2009, Prediction study of the structural, elastic, electronic and optical properties of the antiperovskite, Solid State Commun., 149, 2002, 10.1016/j.ssc.2009.08.033 Russ, 1929, Mater. Phys, 9, 49 Voigt, 1928, Lehrbuch der kristallphysik (mit ausschluss der kristalloptik) Feng, 2011, Electronic structure, mechanical properties and thermal conductivity of Ln2Zr2O7 (Ln = La, Pr, Nd, Sm, Eu and Gd) pyrochlore, Acta Mater., 59, 1742, 10.1016/j.actamat.2010.11.041 Frantsevich, 1983 Pugh, 1954, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dubl. Phil. Mag. J. Sci., 45, 823, 10.1080/14786440808520496 Pettifor, 1992, Theoretical predictions of structure and related properties of intermetallics, Mater. Sci. Technol., 8, 345, 10.1179/mst.1992.8.4.345 Fu, 2008, Ab initio calculations of elastic constants and thermodynamic properties of NiAl under high pressures, Comput. Mater. Sci., 44, 774, 10.1016/j.commatsci.2008.05.026 Anderson, 1963, A simplified method for calculating the Debye temperature from elastic constants, J. Phys. Chem. Solids, 24, 909, 10.1016/0022-3697(63)90067-2 Fine, 1984, Elastic constants versus melting temperature in metals, Scr. Metall., 18, 951, 10.1016/0036-9748(84)90267-9 Madsen, 2006, BoltzTraP. A code for calculating band-structure dependent quantities, Comput. Phys. Commun., 175, 67, 10.1016/j.cpc.2006.03.007 Fox, 2002, 2 Guendouz, 2016, Electronic structure, optical and thermodynamic properties of ternary hydrides MBeH3 (M = Li, Na, and K), Can. J. Phys., 94, 865, 10.1139/cjp-2016-0299 Penn, 1962, Wave-number-dependent dielectric function of semiconductors, Phys. Rev., 128, 2093, 10.1103/PhysRev.128.2093