Soil erosion risk assessment in the Chaleleka wetland watershed, Central Rift Valley of Ethiopia

Springer Science and Business Media LLC - Tập 4 - Trang 1-12 - 2015
Kebede Wolka1, Habitamu Tadesse1, Efrem Garedew2, Fantaw Yimer1
1Hawassa University, Wondo Genet College of Forestry and Natural Resources, School of Natural Resources and Environmental Studies, Shashemene, Ethiopia
2Hawassa University, Wondo Genet College of Forestry and Natural Resources, School of Forestry, Shashemene, Ethiopia

Tóm tắt

Increased flooding and newly formed rills and gullies were observed in the Cheleleka wetland watershed, over the past three to five years. These events are due to problems related to land use changes and are adversely affecting land productivity. This study was conducted to quantify, analyze and map soil erosion risk areas using the Revised Universal Soil Loss Equation. Only 13.6 percent of the study area has a soil loss value less than 10 ton per hectare per year with the remaining area experiencing a higher soil loss value. A large area, 53.6 percent of the watershed, is under severe to extremely severe soil loss (>45 ton per hectare per year). Another 17.3 percent of the study area has annual soil loss of 20–45 ton per hectare. A significantly large area of the Cheleleka wetland watershed has non-tolerable soil erosion that threatens annual crop production, land productivity, and hydrological functioning of the area. From the conservation perspective, a large proportion of the watershed needs immediate watershed management intervention.

Tài liệu tham khảo

Admasu A (2005) Study of sediment yield from the Watershed of Angereb reservoir. MSc thesis, Department of Agricultural Engineering, Alemaya University, Ethiopia Arekhi S, Darvishi AB, Shabani A, Fathizad H, Ahamdyasbchin S (2012) Mapping soil erosion and sediment yield susceptibility using RUSLE, remote sensing and GIS (Case study: Cham Gardalan Watershed, Iran). Adv Environ Biol 6(1):109–124 Arghiuş C, Arghiuş V (2011) The quantitative estimation of the soil erosion using USLE type ROMSEM model: Case-study-the Codrului ridge and Piedmont (Romania). Carpathian J Earth Environ Sci 6(2):59–66 Beskow S, Mello CR, Norton LD, Curi N, Viola MR, Avanzi JC (2009) Soil erosion prediction in the Grande River Basin, Brazil using distributed modeling. Catena 79:49–59 Bewket W, Teferi E (2009) Assessment of soil erosion hazard and prioritization for treatment at the watershed level: case study in the Chemoga watershed, Blue Nile basin, Ethiopia. Land Degrad Dev 20:609–622 Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3(3):398–417 Cebecauer T, Hofierka J (2008) The consequences of land-cover changes on soil erosion distribution in Slovakia. Geomorphology 98:187–198 CSA (Central Statistical Authority of Ethiopia) (2007) Report of population and housing census. Addis Ababa, Ethiopia. Fang N, Shi Z, Li L, Guo Z, Liu Q, Ai L (2012) The effects of rainfall regimes and land use changes on runoff and soil loss in a small mountainous watershed. Catena 99:1–8 Gaatib R, Larabi A (2014) Integrated evaluation of soil erosion hazard and risk management in the Oued Beht watershed using remote sensing and GIS techniques: impacts on El Kansra Dam Siltation (Morocco). J Geogr Inf Syst 2014(6):677–689 Gebreyesus BT, Vlek PG, Lulseged T (2013) Application of SWAT model to assess erosion hotspot for sub-catchment management at Mai-Negus catchment in northern Ethiopia. East Afr J Sci Tech 2(2):97–123 Gessesse D (2007) Forest Decline in South Central Ethiopia: Extent, History, and Process. Ph.D. thesis, Stockholm University, Stocholm, Sweden Gitas IZ, Douros K, Minakou C, Silleos GN, Karydas CG (2009) Multi-temporal soil erosion risk assessment. In: Chalkidiki N (ed) Using a modified USLE raster model. EARSeLe Proceedings 8, 1/2009., pp 40–52 Gleason RA E Jr, Hubbard DE, Duffy WG (2003) Effects of sediment load on emergence of aquatic invertebrates and plants from wetland soil egg and seed banks. Wetlands 23(1):26–34 Gupta P, Uniyal S (2012) A case study of Ramgad watershed, Nainital for soil erosion risk assessment using CORINE methodology. Int J Eng Res Technol 1(10):1–7 Haile GW, Fetene M (2012) Assessment of soil erosion hazard in kilie catchment, east shoa, Ethiopia. Land Degrad Dev 23:293–306 Hudson NW (1981) Soil Conservation. Batsford, London Karaburun A (2010) Estimation of C factor for soil erosion modeling using NDVI in Buyukcekmece watershed. Ozean J Appl Sci 3(1):77–85 Kebede W, Tefera M, Alemayehu T, Habtamu T (2014) Impact of land cover change on water quality and stream flow in lake Hawassa watershed of Ethiopia. Agric Sci 5:647–659 Kheir RB, Abdallah C, Runnstrom M, Mart-Ensson U (2008) Designing erosion management plans in Lebanon using remote sensing, GIS and decision-tree modeling. Landsc Urban Plan 88(2–4):54–63 Lee KH, Isenhart TM, Schultz RC (2003) Sediment and nutrient removal in an established multi-species riparian buffer. J Soil Water Conserv 58(1):1–7 Luo Z, Deng L, Yan C (2014) Soil erosion under different plant cover types and its influencing factors in Napahai Catchment, Shangri-La County, Yunnan Province, China, International. J Sustain Dev World Ecol. doi:10.1080/13504509.2014.924448. Morgan RPC (2005) Soil Erosion and Conservation (3rd edn). Blackwell Science, Oxford Nekhay O, Arriaza M, Boerboom L (2009) Evaluation of soil erosion risk using Analytic Network Process and GIS: a case study from Spanish mountain olive plantations. J Environ Manage 90:3091–3104 Oruk EO, Eric NJ, Ogogo AU (2012) Influence of soil textural properties and land use cover type on soil erosion of a characteristic ultisols in Betem, Cross River Sate, Nigeria. J Sustain Dev 5(7):104–110 Pal B, Samanta S (2011) Estimation of soil loss using remote sensing and geographic information system techniques: Case study of Kaliaghai River basin, Purba & Paschim Medinipur District, West Bengal, India. Indian J Sci Technol 4(10):1202–1207 Pimentel D, Burgess M (2013) Soil erosion threatens food production. Agriculture 3(3):443–463 Raissouni A, Khali Issa L, El Arrim A, Maâtouk M, Passalacqua R (2012) GIS-based model to assess erosion sensitivity in Northern Morocco. Laou watershed case study. Int J Geosci 3:610–626 Schiettecatte W, D’hondt L, Cornelis WM, Acosta ML, Leal Z, Lauwers N, Almoza Y, Alonso GR, Díaz J, Ruíz M, Gabriels D (2008) Influence of land use on soil erosion risk in the Cuyaguateje watershed (Cuba). Catena 74:1–12 Sender GC, Zheng T, Heng P, Zhong Y, Barry DA (2011) Sustainable soil and water resources: modeling soil erosion and its impact on the environment. 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011. http://mssanz.org.au/modsim2011 Shahbazi F, Jafarzadeh AA, Rosa DD, Anaya-Romero M (2010) Soil erosion assessment and monitoring by using ImpelERO model in east Azerbaijan province, Iran. 19th World Congress of Soil Science, Soil Solutions for a Changing World. 1 – 6 August 2010, Brisbane, Australia Shiferaw A (2011) Estimating soil loss rates for soil conservation planning in the Borena woreda of south Wollo highlands, Ethiopia. J Sustain Dev Afr 13(3):87–106 Starchi S, Freppaz M, Godone D, Zanini E (2013) Assessing the susceptibility of alpine soils to erosion using soil physical and land indicators. Soil Use Manag 29(4):586–596 Tan HK (2005) Soil Sampling, preparation, and analysis. 2nd edition. Taylor & Francis. Tenalem A, Robert B, van Arno L, Yemane G, Dagnachew L, Japheth O (2007) Hydrodynamics of topographically closed lakes in the Ethio-Kenyan Rift: The case of lakes Hawassa and Naivasha. J Spat Hydrol 7(1):81–100 Tessema I (2011) Soil Erosion Risk Assessment with RUSLE and GIS in Dire Dam Watershed. Masters thesis, Environmental Science, Addis Ababa University, Ethiopia Tongqian Z, Bosu Y, Hua Z (2009) Assessment of the erosion control function of forest ecosystems based on GIS: a case study in Zhangjiajie National Forest Park, China. Int J Sustain Dev World Ecol 16(5):356–361 Ustun B (2008) Soil erosion modelling by using GIS & Remote Sensing: a case study, Ganos mountain. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Vol. XXXVII. Part B7, Beijing Wagayehu B, Drake L (2003) Soil and water conservation decision behavior of subsistence farmers in the Eastern Highlands of Ethiopia: a case study of the Hunde-Lafto area. Ecol Econ 46:437–451 Wang B, Zheng F, Römkens M, Darboux F (2013) Soil erodibility for water erosion: a perspective and Chinese experiences. Geomorphology 187:1–10 Wischmeier WH, Smith DD (1978) Predicting Rainfall Erosion Losses: A Guide to Conservation Planning. United States Department of Agriculture, Washington, p 58 Zerihun M (1999) Natural resource competition and Inter ethnic relations in Wondo Genet, South central Ethiopia. M.Sc. Thesis, Addis Ababa University, Addis Ababa Zhao W, Fu B, Qui Y (2013) An upscaling method for cover-management factor and its application in the loess Plateau of China. Int J Environ Res Public Health 10:4752–4766 Zhou P, Luukkanen O, Tokola T, Nieminen J (2008) Effect of vegetation cover on soil erosion in a mountainous watershed. Catena 75:319–325 Zhou ZC, Gan ZT, Shangguan ZP, Dong ZB (2015) China’s Grain for Green Program has reduced soil erosion in the upper reaches of the Yangtze River and the middle reaches of the Yellow River. Int J Sustain Dev World Ecol 16(4):234–239