KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber

Chemical Research in Chinese Universities - Tập 30 - Trang 441-446 - 2014
Lili Gao1, Haiyan Lu1, Haibo Lin1, Xiuyun Sun2, Jianling Xu3, Dechen Liu1, Yang Li1
1College of Chemistry, Jilin University, Changchun, P. R. China
2College of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin, P. R. China
3School of Environment, Northeast Normal University, Changchun, P.R. China

Tóm tắt

The activated carbon fiber(ACF) was prepared from polyacrylonitrile-based pre-oxidized fiber(PANOF) by KOH direct activation. The influence of activation conditions including impregnation ratio(the mass ratio of PANOF to KOH), activation temperature and activation time on the pore structure and electrochemical properties of ACF was investigated, and the corresponding activation mechanism was proposed. The ACF prepared at an activation temperature of 800 °C and an impregnation ratio(the mass ratio of PANOF to KOH) of 1:2 for an activation time of 1 h in 6 mol/L KOH solution exhibits a specific surface area of 3029 m2/g, a mesoporosity of 84.2% and a specific capacitance of 288 F/g, and shows a good capacitive performance. The prepared ACF can be used as the electrode material for supercapacitors.

Tài liệu tham khảo

Lei C., Amini N., Markoulidis F., Wilson P., Tennison S., Lekakou C., J. Mater. Chem. A, 2013, 1, 6037 Xu B., Wu F., Chen R., Cao G., Chen S., Yang Y., J. Power Sources, 2010, 195, 2118 Kim Y. J., Horie Y., Matsuzawa Y., Ozaki S., Endo M., Dresselhaus M. S., Carbon, 2004, 42, 2423 Zulamita Z. B., Francisco C. M., Carlos M. C., J. Power Sources, 2012, 219, 80 Robert A. F., Morgan R. W., Jud R. W., ECS Journal of Solid State Science and Technology, 2013, 10(2), 3170 Yoon B. J., Jeong S. H., Lee K. H., Kim H. S., Park C. G., Han J. H., Chemical Physics Letters, 2004, 388, 170 El-Kady M. F., Strong V., Dubin S., Kaner R. B., Science, 2012, 335, 1326 Zhang J., Tian T., Chen Y., Niu Y., Tang J., Qin L. C., Chemical Physics Letters, 2014, 591, 78 Inagaki M., New Carbon Mater., 2009, 24, 193 Ma F., Sun L., Zhao H., Li Q., Huo L., Xia T., Gao S., Chem. Res. Chinese Universities, 2013, 29(4), 735 Dalton S., Heatley F., Budd P. M., Polymer, 1999, 40, 5531 Tang M. M., Bacon R., Carbon, 1964, 2, 211 Maciá-Agulló J. A., Moore B. C., Cazorla-Amorós D., Linares-Solano A., Carbon, 2004, 42, 1367 Babel K., Jurewicz K., J. Physics and Chemistry of Solids, 2004, 65, 275 Hirose T., Zhao B., Okabe T., Yoshimura M., J. Mater. Science, 2003, 37, 3453 Brunouer S., Emmet P. H., Teller E., J. Am. Chem. Soc., 1938, 60, 309 Michal K., Mietek J., Yuri B., J. Colloid Interface Sci., 1996, 182, 282 Guo H., Gao Q., J. Power Sources, 2009, 186, 551 Wang L., Guo Y., Zou B., Rong C., Ma X., Qu Y., Li Y., Wang Z., Bioresource Technology, 2011, 102, 1947 Wilhelm R., Bernd S., J. Appl. Crystallogr., 2002, 35, 624 Ding L., Zou B., Liu H., Li Y., Wang Z., Su Y., Guo Y., Wang X., Chemical Engineering Journal, 2013, 225, 300 Guo Y., Yang S., Yu K., Zhao J., Wang Z., Xu H., Materials Chemistry and Physics, 2002, 74, 320