Stabilization of a High-Capacity and High-Power Nickel-Based Cathode for Li-Ion Batteries

Chem - Tập 4 - Trang 690-704 - 2018
Xiaoqiao Zeng1, Chun Zhan1, Jun Lu1, Khalil Amine1,2
1Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL 60439, USA
2Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia

Tài liệu tham khảo

Whittingham, 2004, Lithium batteries and cathode materials, Chem. Rev., 104, 4271, 10.1021/cr020731c Amine, 2012, Next generation batteries to enable expansion of vehicle electrification, Electrochemistry, 80, 694, 10.5796/electrochemistry.80.694 Lu, 2014, Aprotic and aqueous LiO2 batteries, Chem. Rev., 114, 5611, 10.1021/cr400573b Thackeray, 2012, Electrical energy storage for transportation-approaching the limits of, and going beyond, lithium-ion batteries, Energy Environ. Sci., 5, 7854, 10.1039/c2ee21892e Fernandez, 2011, Assessment of the impact of plug-in electric vehicles on distribution networks, IEEE Trans. Power Syst., 26, 206, 10.1109/TPWRS.2010.2049133 Taniguchi, 2001, Development of nickel/metal-hydride batteries for EVs and HEVs, J. Power Sources, 100, 117, 10.1016/S0378-7753(01)00889-8 Kim, 2012, The current move of lithium ion batteries towards the next phase, Adv. Energy Mater., 2, 860, 10.1002/aenm.201200028 Kim, 2015, A review of lithium and non-lithium based solid state batteries, J. Power Sources, 282, 299, 10.1016/j.jpowsour.2015.02.054 Kang, 2006, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311, 977, 10.1126/science.1122152 Amine, 2001, Factors responsible for impedance rise in high power lithium ion batteries, J. Power Sources, 97-8, 684, 10.1016/S0378-7753(01)00701-7 Tarascon, 2001, Issues and challenges facing rechargeable lithium batteries, Nature, 414, 359, 10.1038/35104644 Amine, 2016, Batteries: polymers switch for safety, Nat. Energy, 1, 15018, 10.1038/nenergy.2015.18 Dunn, 2011, Electrical energy storage for the grid: a battery of choices, Science, 334, 928, 10.1126/science.1212741 Zhang, 2012, Molecular engineering towards safer lithium-ion batteries: a highly stable and compatible redox shuttle for overcharge protection, Energy Environ. Sci., 5, 8204, 10.1039/c2ee21977h Sun, 2016, Promises and challenges of nanomaterials for lithium-based rechargeable batteries, Nat. Energy, 1, 16071, 10.1038/nenergy.2016.71 Chiang, 2010, Building a better battery, Science, 330, 1485, 10.1126/science.1198591 Zeng, 2016, Kinetic study of parasitic reactions in lithium-ion batteries: a case study on LiNi0.6Mn0.2Co0.2O2, ACS Appl. Mater. Interfaces, 8, 3446, 10.1021/acsami.5b11800 Amine, 2014, Rechargeable lithium batteries and beyond: progress, challenges, and future directions, MRS Bull., 39, 395, 10.1557/mrs.2014.62 Maibach, 2016, Electric potential gradient at the buried interface between lithium-ion battery electrodes and the SEI observed using photoelectron spectroscopy, J. Phys. Chem. Lett., 7, 1775, 10.1021/acs.jpclett.6b00391 Park, 2011, Who will drive electric vehicles, olivine or spinel?, Energy Environ. Sci., 4, 1621, 10.1039/c0ee00559b Poizot, 2000, Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries, Nature, 407, 496, 10.1038/35035045 Armand, 2008, Building better batteries, Nature, 451, 652, 10.1038/451652a Bruce, 2008, Nanomaterials for rechargeable lithium batteries, Angew. Chem. Int. Ed., 47, 2930, 10.1002/anie.200702505 Armstrong, 1996, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 381, 499, 10.1038/381499a0 Zhao, 2017, In situ probing and synthetic control of cationic ordering in Ni-rich layered oxide cathodes, Adv. Energy Mater., 7, 1601266, 10.1002/aenm.201601266 Cho, 2000, Novel LiCoO2 cathode material with Al2O3 coating for a Li ion cell, Chem. Mater., 12, 3788, 10.1021/cm000511k Shipova, 2011, On the incorporation of extra Li in lithium cobaltate Li1+xCo1-xO2, Solid State Ionics, 187, 43, 10.1016/j.ssi.2011.01.018 Lamaze, 2003, Cold neutron depth profiling of lithium-ion battery materials, J. Power Sources, 119, 680, 10.1016/S0378-7753(03)00232-5 Van der Ven, 2000, Lithium diffusion in layered LixCoO2, Electrochem. Solid-State Lett., 3, 301, 10.1149/1.1391130 Zheng, 2016, Tuning of thermal stability in layered Li(NixMnyCoz)O2, J. Am. Chem. Soc., 138, 13326, 10.1021/jacs.6b07771 Wu, 2015, Fabrication of Li+-conductive Li2ZrO3-based shell encapsulated LiNi0.5Co0.2Mn0.3O2 microspheres as high-rate and long-life cathode materials for Li-ion batteries, ChemElectroChem, 2, 1921, 10.1002/celc.201500303 Wei, 2015, Kinetics tuning of Li-ion diffusion in layered Li(NixMnyCoz)O2, J. Am. Chem. Soc., 137, 8364, 10.1021/jacs.5b04040 Myung, 2017, Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives, ACS Energy Lett., 2, 196, 10.1021/acsenergylett.6b00594 Ohzuku, 2001, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries, Chem. Lett., 642, 10.1246/cl.2001.642 Paulsen, 2000, O2-Type Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries - II. Structure, composition, and properties, J. Electrochem. Soc., 147, 2478, 10.1149/1.1393556 Lin, 2014, Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries, Nat. Commun., 5, 3529, 10.1038/ncomms4529 Garcia, 2017, Surface structure, morphology, and stability of Li(Ni1/3Mn1/3Co1/3)O2 cathode material, J. Phys. Chem. C, 121, 8290, 10.1021/acs.jpcc.7b00896 Larcher, 2015, Towards greener and more sustainable batteries for electrical energy storage, Nat. Chem., 7, 19, 10.1038/nchem.2085 Lee, 2014, Depth profile studies on nickel rich cathode material surfaces after cycling with an electrolyte containing vinylene carbonate at elevated temperature, Phys. Chem. Chem. Phys., 16, 17062, 10.1039/C4CP02075H Jung, 2014, Understanding the degradation mechanisms of LiNi0.5Co0.2Mn0.3O2 cathode material in lithium ion batteries, Adv. Energy Mater., 4, 1300787, 10.1002/aenm.201300787 Hong, 2012, Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries, Chem. Mater., 24, 2692, 10.1021/cm3005634 Armstrong, 2006, Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2, J. Am. Chem. Soc., 128, 8694, 10.1021/ja062027+ Hou, 2017, Surface/interfacial structure and chemistry of high-energy nickel-rich layered oxide cathodes: advances and perspectives, Small, 4, 1701802, 10.1002/smll.201701802 Abraham, 2002, Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells, Electrochem. Commun., 4, 620, 10.1016/S1388-2481(02)00388-0 Belharouak, 2003, Li(Ni1/3Co1/3Mn1/3)O2 as a suitable cathode for high power applications, J. Power Sources, 123, 247, 10.1016/S0378-7753(03)00529-9 Shizuka, 2007, Effect of CO2 on layered Li1+zNi1-x-yCoxMyO2 (M =Al, Mn) cathode materials for lithium ion batteries, J. Power Sources, 166, 233, 10.1016/j.jpowsour.2007.01.013 Sun, 2002, Synthesis and electrochemical properties of ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V cathode material for lithium secondary batteries, Electrochem. Solid-State Lett., 5, A99, 10.1149/1.1465375 Sun, 2006, Significant improvement of high voltage cycling behavior AlF3-coated LiCoO2 cathode, Electrochem. Commun., 8, 821, 10.1016/j.elecom.2006.03.040 Sun, 2007, AlF3-coating to improve high voltage cycling performance of Li[Ni1/3Co1/3Mn1/3]O2 cathode materials for lithium secondary batteries, J. Electrochem. Soc., 154, A168, 10.1149/1.2422890 Sun, 2002, Electrochemical performance of nano-sized ZnO-coated LiNi0.5Mn1.5O4 spinel as 5 V materials at elevated temperatures, Electrochem. Commun., 4, 344, 10.1016/S1388-2481(02)00277-1 Hou, 2017, Core-shell and concentration-gradient cathodes prepared via co-precipitation reaction for advanced lithium-ion batteries, J. Mater. Chem. A, 5, 4254, 10.1039/C6TA10297B Park, 2015, A high-capacity Li[Ni0.8Co0.06Mn0.14]O2 positive electrode with a dual concentration gradient for next-generation lithium-ion batteries, J. Mater. Chem. A, 3, 22183, 10.1039/C5TA05657H Sun, 2005, Synthesis and characterization of Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries, J. Am. Chem. Soc., 127, 13411, 10.1021/ja053675g Sun, 2011, A novel concentration-gradient Li[Ni0.83Co0.07Mn0.10]O2 cathode material for high-energy lithium-ion batteries, J. Mater. Chem., 21, 10108, 10.1039/c0jm04242k Sun, 2010, A novel cathode material with a concentration-gradient for high-energy and safe lithium-ion batteries, Adv. Funct. Mater., 20, 485, 10.1002/adfm.200901730 Sun, 2010, High-voltage performance of concentration-gradient Li[Ni0.67Co0.15Mn0.8]O2 cathode material for lithium-ion batteries, Electrochim. Acta, 55, 8621, 10.1016/j.electacta.2010.07.074 Gallagher, 2016, Optimizing areal capacities through understanding the limitations of lithium-ion electrodes, J. Electrochem. Soc., 163, A138, 10.1149/2.0321602jes Wu, 2015, Prelithiation activates Li(Ni0.5Mn0.3Co0.2)O2 for high capacity and excellent cycling stability, Nano Lett., 15, 5590, 10.1021/acs.nanolett.5b02246 Yan, 2016, Atomic to nanoscale investigation of functionalities of an Al2O3 coating layer on a cathode for enhanced battery performance, Chem. Mater., 28, 857, 10.1021/acs.chemmater.5b04301 Liao, 2015, Surface-modified concentration-gradient Ni-rich layered oxide cathodes for high-energy lithium-ion batteries, J. Power Sources, 282, 429, 10.1016/j.jpowsour.2015.02.078 Wu, 2010, Surface modification of LiNi0.5Mn1.5O4 by ZrP2O7 and ZrO2 for lithium-ion batteries, J. Power Sources, 195, 2909, 10.1016/j.jpowsour.2009.11.029 Hu, 2009, Cycle life improvement of ZrO2-coated spherical LiNi1/3Co1/3Mn1/3O2 cathode material for lithium ion batteries, J. Power Sources, 188, 564, 10.1016/j.jpowsour.2008.11.113 Miyashiro, 2006, Improvement of degradation at elevated temperature and at high state-of-charge storage by ZrO2 coating on LiCoO2, J. Electrochem. Soc., 153, A348, 10.1149/1.2149306 Li, 2006, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta, 51, 3872, 10.1016/j.electacta.2005.11.015 Cho, 2000, Improvement of structural stability of LiCoO2 cathode during electrochemical cycling by sol-gel coating of SnO2, Electrochem. Solid-State Lett., 3, 362, 10.1149/1.1391149 Han, 2014, The effect of MgO coating on Li1.17Mn0.48Ni0.23Co0.12O2 cathode material for lithium ion batteries, Solid State Ionics, 255, 113, 10.1016/j.ssi.2013.12.018 Yoon, 2012, Structural study of the coating effect on the thermal stability of charged MgO-coated LiNi0.8Co0.2O2 cathodes investigated by in situ XRD, J. Power Sources, 217, 128, 10.1016/j.jpowsour.2012.05.028 Kweon, 2000, Modification of LixNi1-yCoyO2 by applying a surface coating of MgO, J. Power Sources, 88, 255, 10.1016/S0378-7753(00)00368-2 Kim, 2016, Highly stable TiO2 coated Li2MnO3 cathode materials for lithium-ion batteries, J. Power Sources, 304, 119, 10.1016/j.jpowsour.2015.11.020 Qin, 2016, Improvement of electrochemical performance of nickel rich LiNi0.6Co0.2Mn0.2O2 cathode active material by ultrathin TiO2 coating, Dalton T, 45, 9669, 10.1039/C6DT01764A Xu, 2015, Structure and electrochemical performance of TiO2-coated LiNi0.80CO0.15Al0.05O2 cathode material, Mater. Lett., 143, 151, 10.1016/j.matlet.2014.12.093 Chen, 2014, An approach to application for LiNi0.6Co0.2Mn0.2O2 cathode material at high cutoff voltage by TiO2 coating, J. Power Sources, 256, 20, 10.1016/j.jpowsour.2014.01.061 Zheng, 2008, The effects of TiO2 coating on the electrochemical performance of Li[Li0.2Mn0.54Ni0.13CO0.13]O2 cathode material for lithium-ion battery, Solid State Ionics, 179, 1794, 10.1016/j.ssi.2008.01.091 Fan, 2007, Effects of the nanostructured SiO2 coating on the performance of LiNi0.5Mn1.5O4 cathode materials for high-voltage Li-ion batteries, Electrochim. Acta, 52, 3870, 10.1016/j.electacta.2006.10.063 Omanda, 2004, Improvement of the thermal stability of LiNi0.8Co0.2O2 cathode by a SiOx protective coating, J. Electrochem. Soc., 151, A922, 10.1149/1.1710892 Cho, 2003, Effect of P2O5 and AlPO4 coating on LiCoO2 cathode material, Chem. Mater., 15, 3190, 10.1021/cm0302173 Cho, 2003, A breakthrough in the safety of lithium secondary batteries by coating the cathode material with AIPO4 nanoparticles, Angew. Chem. Int. Ed., 42, 1618, 10.1002/anie.200250452 Kim, 2007, Lithium-reactive Co3(PO4)2 nanoparticle coating on high-capacity LiNi0.8Co0.16Al0.04O2 cathode material for lithium rechargeable batteries, J. Electrochem. Soc., 154, A495, 10.1149/1.2716556 Zhao, 2016, Cu3(PO4)2/C composite as a high-capacity cathode material for rechargeable Na-ion batteries, Nano Energy, 27, 420, 10.1016/j.nanoen.2016.07.011 Ding, 2017, Surface heterostructure induced by PrPO4 modification in Li1.2[Mn0.54Ni0.13Co0.13]O2 cathode material for high-performance lithium-ion batteries with mitigating voltage decay, ACS Appl. Mater. Interfaces, 9, 27936, 10.1021/acsami.7b07221 Chong, 2014, Li3PO4-Coated LiNi0.5Mn1.5O4: a stable high-voltage cathode material for lithium-ion batteries, Chemistry, 20, 7479, 10.1002/chem.201304744 Tron, 2016, AlF3-coated LiMn2O4 as cathode material for aqueous rechargeable lithium battery with improved cycling stability, J. Power Sources, 325, 360, 10.1016/j.jpowsour.2016.06.049 Zheng, 2014, Functioning mechanism of AlF3 coating on the Li- and Mn-rich cathode materials, Chem. Mater., 26, 6320, 10.1021/cm502071h Lee, 2011, AlF3-coated LiCoO2 and Li[Ni1/3Co1/3Mn1/3]O2 blend composite cathode for lithium ion batteries, J. Power Sources, 196, 6974, 10.1016/j.jpowsour.2010.11.014 Myung, 2010, Effect of AlF3 coating on thermal behavior of chemically delithiated Li0.35[Ni1/3Co1/3Mn1/3]O2, J. Phys. Chem. C, 114, 4710, 10.1021/jp9082322 Sun, 2009, Role of AlF3 coating on LiCoO2 particles during cycling to cutoff voltage above 4.5 V, J. Electrochem. Soc., 156, A1005, 10.1149/1.3236501 Xie, 2017, Atomic layer deposition of stable LiAlF4 lithium ion conductive interfacial layer for stable cathode cycling, ACS Nano, 11, 7019, 10.1021/acsnano.7b02561 Song, 2017, Long-life nickel-rich layered oxide cathodes with a uniform Li2ZrO3 surface coating for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9, 9718, 10.1021/acsami.7b00070 Liu, 2016, Enhanced electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode with an ionic conductive LiVO3 coating layer, ACS Sustain. Chem. Eng., 4, 255, 10.1021/acssuschemeng.5b01083 Zhang, 2016, Enhanced electrochemical performances of Li1.2Ni0.2Mn0.6O2 cathode materials by coating LiAlO2 for lithium-ion batteries, Ceram. Int., 42, 1870, 10.1016/j.ceramint.2015.09.154 Son, 2015, Self-terminated artificial SEI layer for nickel-rich layered cathode material via mixed gas chemical vapor deposition, Chem. Mater., 27, 7370, 10.1021/acs.chemmater.5b03081 Chae, 2017, Sulfonate-immobilized artificial cathode electrolyte interphases layer on Ni-rich cathode, J. Power Sources, 360, 480, 10.1016/j.jpowsour.2017.06.037 Kim, 2017, Prospect and reality of Ni-rich cathode for commercialization, Adv. Energy Mater. Peled, 2017, Review-SEI: past, present and future, J. Electrochem. Soc., 164, A1703, 10.1149/2.1441707jes Lu, 2016, The role of nanotechnology in the development of battery materials for electric vehicles, Nat. Nanotechnol., 11, 1031, 10.1038/nnano.2016.207 Shi, 2017, Nanostructured conductive polymer gels as a general framework material to improve electrochemical performance of cathode materials in Li-ion batteries, Nano Lett., 17, 1906, 10.1021/acs.nanolett.6b05227 Kim, 2017, Self-induced concentration gradient in nickel-rich cathodes by sacrificial polymeric bead clusters for high-energy lithium-ion batteries, Adv. Energy Mater., 7 Shi, 2016, Designing hierarchically nanostructured conductive polymer gels for electrochemical energy storage and conversions, Chem. Mater., 28, 2466, 10.1021/acs.chemmater.5b04879 Kim, 2016, Conductive polymers for next-generation energy storage systems: recent progress and new functions, Mater. Horiz., 3, 517, 10.1039/C6MH00165C Wang, 2016, Facile fabrication of ethoxy-functional polysiloxane wrapped LiNi0.6Co0.2Mn0.2O2 cathode with improved cycling performance for rechargeable li-ion battery, ACS Appl. Mater. Interfaces, 8, 18439, 10.1021/acsami.6b04644 Gao, 2017, Parasitic reactions in nanosized silicon anodes for lithium-ion batteries, Nano Lett., 17, 1512, 10.1021/acs.nanolett.6b04551 Chen, 2010, Role of surface coating on cathode materials for lithium-ion batteries, J. Mater. Chem., 20, 7606, 10.1039/c0jm00154f Sun, 2012, The role of AlF3 coatings in improving electrochemical cycling of Li-enriched nickel-manganese oxide electrodes for li-ion batteries, Adv. Mater., 24, 1192, 10.1002/adma.201104106 Kim, 2008, Electrochemical and thermal characterization of AlF3-coated Li[Ni0.8Co0.15Al0.05]O2 cathode in lithium-ion cells, J. Power Sources, 179, 347, 10.1016/j.jpowsour.2007.12.109 Woo, 2007, Significant improvement of electrochemical performance of AlF3-coated Li[Ni0.8Co0.1Mn0.1]O2 cathode materials, J. Electrochem. Soc., 154, A1005, 10.1149/1.2776160 Chen, 2017, Ni-Rich LiNi0.8Co0.1Mn0.1O2 oxide coated by dual-conductive layers as high performance cathode for lithium-ion batteries, ACS Appl. Mater. Interfaces, 9, 29732, 10.1021/acsami.7b08006 Sun, 2012, Nanostructured high-energy cathode materials for advanced lithium batteries, Nat. Mater., 11, 942, 10.1038/nmat3435 Sun, 2006, Microscale core-shell structured Li[(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 as positive electrode material for lithium batteries, Electrochem. Solid-State Lett., 9, A171, 10.1149/1.2165710 Sun, 2006, Synthesis of spherical nano- to microscale core-shell particles Li[(Ni0.8Co0.1Mn0.1)1-x(Ni0.5Mn0.5)x]O2 and their applications to lithium batteries, Chem. Mater., 18, 5159, 10.1021/cm061746k Sun, 2006, Novel core-shell-structured Li[(Ni0.8Co0.2)0.8(Ni0.5Mn0.5)0.2]O2 via coprecipitation as positive electrode material for lithium secondary batteries, J. Phys. Chem. B, 110, 6810, 10.1021/jp0571473 Sun, 2009, High-energy cathode material for long-life and safe lithium batteries, Nat. Mater., 8, 320, 10.1038/nmat2418 Myung, 2010, Surface modification of cathode materials from nano- to microscale for rechargeable lithium-ion batteries, J. Mater. Chem., 20, 7074, 10.1039/c0jm00508h Yang, 2016, Concentration-gradient LiMn0.8Fe0.2PO4 cathode material for high performance lithium ion battery, J. Power Sources, 304, 293, 10.1016/j.jpowsour.2015.11.037 Wang, 2016, Lithium phosphorus oxynitride coated concentration gradient Li [Ni0.73Co0.12Mn0.15]O2 cathode material with enhanced electrochemical properties, Electrochim. Acta, 192, 340, 10.1016/j.electacta.2016.01.176 Yoon, 2014, Nanorod and nanoparticle shells in concentration gradient core-shell lithium oxides for rechargeable lithium batteries, ChemSusChem, 7, 3295, 10.1002/cssc.201402389 Lim, 2015, Advanced concentration gradient cathode material with two-slope for high-energy and safe lithium batteries, Adv. Funct. Mater., 25, 4673, 10.1002/adfm.201501430 Lee, 2016, High-energy-density lithium-ion battery using a carbon-nanotube-Si composite anode and a compositionally graded Li[Ni0.85Co0.05Mn0.10]O2 cathode, Energy Environ. Sci., 9, 2152, 10.1039/C6EE01134A Haregewoin, 2016, Electrolyte additives for lithium ion battery electrodes: progress and perspectives, Energy Environ. Sci., 9, 1955, 10.1039/C6EE00123H Xu, 2014, Electrolytes and interphases in li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w Korsun, 2016, Ion association in aprotic solvents for lithium ion batteries requires discrete-continuum approach: lithium bis(oxalato)borate in ethylene carbonate based mixtures, J. Phys. Chem. C, 120, 16545, 10.1021/acs.jpcc.6b05963 Xu, 2014, Generation of cathode passivation films via oxidation of lithium bis(oxalato) borate on high voltage spinel (LiNi0.5Mn1.5O4), J. Phys. Chem. C, 118, 7363, 10.1021/jp501970j Zheng, 2017, Electrolyte additive enabled fast charging and stable cycling lithium metal batteries, Nat. Energy, 2, 17012, 10.1038/nenergy.2017.12 Pieczonka, 2013, Impact of lithium bis(oxalate)borate electrolyte additive on the performance of high-voltage spinel/graphite Li-ion batteries, J. Phys. Chem. C, 117, 22603, 10.1021/jp408717x Shkrob, 2016, Chemical stability of lithium 2-trifluoromethyl-4,5-dicyanoimidazolide, an electrolyte salt for Li-ion cells, J. Phys. Chem. C, 120, 28463, 10.1021/acs.jpcc.6b09837 He, 2017, High voltage LiNi0.5Mn0.3Co0.2O2/graphite cell cycled at 4.6 V with a FEC/HFDEC-based electrolyte, Adv. Energy Mater., 7, 1700109, 10.1002/aenm.201700109 Kim, 2016, Fluorinated hyperbranched cyclotriphosphazene simultaneously enhances the safety and electrochemical performance of high-voltage lithium-ion batteries, ChemElectroChem, 3, 913, 10.1002/celc.201600025 Xu, 2017, FEC as the additive of 5 V electrolyte and its electrochemical performance for LiNi0.5Mn1.5O4, J. Electroanal. Chem., 791, 109, 10.1016/j.jelechem.2017.03.017 Xu, 2012, Tris (pentafluorophenyl) phosphine: an electrolyte additive for high voltage Li-ion batteries, Electrochem. Commun., 18, 123, 10.1016/j.elecom.2012.02.037 Park, 2016, Iodine as a temperature-responsive redox shuttle additive for swelling suppression of lithium-ion batteries at elevated temperatures, ChemElectroChem, 3, 1915, 10.1002/celc.201600343 Cao, 2016, Atomic layer deposition of LixAlyS solid-state electrolytes for stabilizing lithium-metal anodes, ChemElectroChem, 3, 858, 10.1002/celc.201600139 Wang, 2014, Atomic layer deposition of lithium phosphates as solid-state electrolytes for all-solid-state microbatteries, Nanotechnology, 25, 504007, 10.1088/0957-4484/25/50/504007 Li, 2014, Atomic layer deposition of solid-state electrolyte coated cathode materials with superior high-voltage cycling behavior for lithium ion battery application, Energy Environ. Sci., 7, 768, 10.1039/C3EE42704H