Equilibrium and kinetic Si isotope fractionation factors and their implications for Si isotope distributions in the Earth’s surface environments

Springer Science and Business Media LLC - Tập 35 - Trang 15-24 - 2015
Hong-tao He1,2, Siting Zhang1, Chen Zhu, Yun Liu1
1State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
2University of Chinese Academy of Sciences, Beijing, China

Tóm tắt

Several important equilibrium Si isotope fractionation factors among minerals, organic molecules and the H4SiO4 solution are complemented to facilitate the explanation of the distributions of Si isotopes in Earth’s surface environments. The results reveal that, in comparison to aqueous H4SiO4, heavy Si isotopes will be significantly enriched in secondary silicate minerals. On the contrary, quadra-coordinated organosilicon complexes are enriched in light silicon isotope relative to the solution. The extent of 28Si-enrichment in hyper-coordinated organosilicon complexes was found to be the largest. In addition, the large kinetic isotope effect associated with the polymerization of monosilicic acid and dimer was calculated, and the results support the previous statement that highly 28Si-enrichment in the formation of amorphous quartz precursor contributes to the discrepancy between theoretical calculations and field observations. With the equilibrium Si isotope fractionation factors provided here, Si isotope distributions in many of Earth’s surface systems can be explained. For example, the change of bulk soil δ30Si can be predicted as a concave pattern with respect to the weathering degree, with the minimum value where allophane completely dissolves and the total amount of sesqui-oxides and poorly crystalline minerals reaches their maximum. When, under equilibrium conditions, the well-crystallized clays start to precipitate from the pore solutions, the bulk soil δ30Si will increase again and reach a constant value. Similarly, the precipitation of crystalline smectite and the dissolution of poorly crystalline kaolinite may explain the δ30Si variations in the ground water profile. The equilibrium Si isotope fractionations among the quadra-coordinated organosilicon complexes and the H4SiO4 solution may also shed light on the Si isotope distributions in the Si-accumulating plants.

Tài liệu tham khảo

Balan E, Saitta AM, Mauri F, Calas G (2001) First-principles modeling of the infrared spectrum of kaolinite. Am Mineral 86:1321–1330 Basile-Doelsch I, Meunier JD, Parron C (2005) Another continental pool in the terrestrial silicon cycle. Nature 433:399–402 Becke AD (1993) A new mixing of hartreee-fork and local density-functional theories. J Chem Phys 98:1372–1377 Bigeleisen J, Mayer MG (1947) Calculation of equilibrium constants for isotopic exchange reactions. J Chem Phys 15:261–267 Bigeleisen J, Wolfsberg M (1958) Theoretical and experimental aspects of isotope effects in chemical kinetics. Adv Chem Phys 1:15–76 Bish DL (1993) Rietveld refinement of the kaolinite structure at 1.5 K. Clays Clay Miner 41:738–744 Bish D, Von Dreele R (1989) Rietveld refinement of non-hydrogen atomic positions in kaolinite. Clays Clay Miner 37:289–296 Delstanche S, Opfergelt S, Cardinal D, Elsass F, André L, Delvaux B (2009) Silicon isotopic fractionation during adsorption of aqueous monosilicic acid onto iron oxide. Geochemica et Cosmochimica Acta 73:923–934 Ding T, Tian S, Sun L, Wu L, Zhou J, Chen Z (2008) Silicon isotope fractionation between rice plants and nutrient solution and its significance to the study of the silicon cycle. Geochemica et Cosmochimica Acta 72:5600–5615 Ding T, Zhou J, Wan D, Chen Z, Wang C, Zhang F (2009) Silicon isotope fractionation in bamboo and its significance to the biogeochemical cycle of silicon. Geochemica et Cosmochimica Acta 72:1381–1395 Frisc MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA, Peralta JE Jr, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Comperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2010) Gaussian 09 (Revision C.01). Gaussian Inc, Wallingford Geilert S, Vroon PZ, Roerdink DL, Van Cappellen P, van Bergen MJ (2014) Silicon isotope fractionation during abiotic silica precipitation at low temperature: influences from flow-through experiments. Geochemica et Cosmochimica Acta 142:95–114 Georg R, Reynolds B, West A, Burton K, Halliday A (2007) Silicon isotope variations accompanying basalt weathering in Iceland. Earth Planet Sci Lett 261:476–490 Georg R, Zhu C, Reynolds B, Halliday A (2009) Stable silicon isotopes of groundwater, feldspars, and clay coatings in the Navajo Sandstone aquifer, Black Mesa, Arizona, USA. Geochemica et Cosmochimica Acta 73:2229–2241 Gournis D, Lappas A, Karakassides M, Többens D, Moukarika A (2008) A neutron diffraction study of alkali cation migration in montmorillonites. Phys Chem Miner 35:49–58 Harlow GE, Brown GE (1980) Low albite: an X-ray and neutron diffraction study. Am Mineral 65:986–995 Hazen R, Finger L, Hemley R, Mao H (1989) High-pressure crystal chemistry and amorphization of α-quartz. Solid State Commun 72:507–511 He H, Liu Y (2015) Si isotope fractionations during the precipitation of quartz and the adsorption of H4SiO4(aq) on Fe(III)-oxyhydroxide surfaces. Chin J Geochem 34:459–468 Hughes H, Sondag F, Santos R, André L, Cardinal D (2013) The riverine silicon isotope composition of the Amazon Basin. Geochemica et Cosmochimica Acta 121:637–651 Kinrade SD, Del Nin JW, Schach AS, Sloan TA, Wilson KL, Knight CT (1999) Stable five-and six-coordinated silicate anions in aqueous solution. Science 285:1542–1545 Kinrade SD, Hamilton RJ, Schach AS, Knight CT (2001) Aqueous hypervalent silicon complexes with aliphatic sugar acids. J Chem Soc Dalton Trans 961–963 Kubicki J, Heaney P (2003) Molecular orbital modeling of aqueous organosilicon complexes: implications for silica biomineralization. Geochemica et Cosmochimica Acta 67:4113–4121 Liu Y (2013) On the test of a new volume variable cluster model method for stable isotopic fractionation of solids: Equilibrium Mg isotopic fractionations between minerals and solutions. Goldschmidt 2013 conference abstracts. 1632 McIntosh GJ (2012) A theoretical kinetic model of the temperature and pH dependent dimerization of orthosilicic acid in aqueous solution. Phys Chem Chem Phys 14:996–1013 McIntosh GJ (2013) Theoretical investigations into the nucleation of silica growth in basic solution part I- ab Initio studies of the formation of trimers and tetramers. Phys Chem Chem Phys 15:3155–3172 Méheut M, Schauble EA (2014) Silicon isotope fractionation in silicate minerals: insights from first-principles models of phyllosilicates, albite and pyrope. Geochemica et Cosmochimica Acta 134:137–154 Méheut M, Lazzeri M, Balan E, Mauri F (2007) Equilibrium isotopic fractionation in the kaolinite, quartz, water system: prediction from first-principles density-functional theory. Geochemica et Cosmochimica Acta 71:3170–3181 Méheut M, Lazzeri M, Balan E, Mauri F (2009) Structural control over equilibrium silicon and oxygen isotopic fractionation: a first-principles density-functional theory study. Chem Geol 258:28–37 Mitani N, Ma JF, Iwashita T (2005) Identification of the silicon form in xylem sap of rice (Oryza sativa L.). Plant Cell Physiol 46:279–283 Nangia S, Garrison BJ (2008) Reaction rates and dissolution mechanisms of quartz as a function of pH. J Phys Chem A 112:2027–2033 Neder R, Burghammer M, Grasl T, Schulz H, Bram A, Fiedler S (1999) Refinement of the kaolinite structure from single-crystal synchrotron data. Clays Clay Miner 47:487–494 Opfergelt S, Delmelle P (2012) Silicon isotopes and continental weathering processes: assessing controls on Si transfer to the ocean. CR Geosci 344:723–738 Rastsvetaeva RK, Chukanov NV, Zadov AE (2009) Refined structure of afwillite from the northern Baikal region. Crystallogr Rep 54:418–422 Redlich O (1935) Eine allgemeine Beziehung zwischen den Schwingungsfrequenzen isotoper Molekeln. Zeitschrift Fur Physikalische Chemie-International J Res Phys Chem Chem Phys B 28:371–382 Rimstidt JD, Barnes HL (1980) The kinetics of silica-water reactions. Geochemica et Cosmochimica Acta 44:1683–1699 Roerdink DL, van den Boorn SHJM, Geilert S, Vroon PZ, van Bergen MJ (2015) Experimental constraints on kinetic and equilibrium silicon isotope fractionation during the formation of non-biogenic chert deposits. Chem Geol 402:40–51 Sahai N (2004) Calculation of 29Si NMR shifts of silicate complexes with carbohydrates, amino acids, and muhicarboxylic acids: potential role in biological silica utilization. Geochemica et Cosmochimica Acta 68:227–237 Savage PS, Georg RB, Williams HM, Burton KW, Halliday AN (2011) Silicon isotope fractionation during magmatic differentiation. Geochemica et Cosmochimica Acta 75:6124–6139 Tian X. (2008) Physio-ecology relationship between root pressure and bamboo species under low temperature stressed. Ph.D. Thesis, Nanjing Forestry University, Nanjing Urey H.C. (1947) The thermodynamic properties of isotopic substances. J Chem Soc (London). 562–581 Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoots. Plant Cell 20:1381–1389 Zhang ST, Liu Y (2014) Molecular-level mechanisms of quartz dissolution under neutral and alkaline conditions in the presence of electrolytes. Geochem J 48:189–205 Zhu C, Veblen DR, Blum AE, Chipera SJ (2006) Naturally weathered feldspar surfaces in the Navajo Sandstone aquifer, Black Mesa, Arizona: electron microscopic characterization. Geochemica et Cosmochimica Acta 70:4600–4616 Ziegler K, Chadwick OA, Brzezinski MA, Kelly EF (2005) Natural variations of δ30Si ratios during progressive basalt weathering, Hawaiian Islands. Geochemica et Cosmochimica Acta 69:4597–4610