Three-dimensional static and dynamic analysis of functionally graded elliptical plates, employing graded finite elements

Kamran Asemi1, H. Ashrafi2, Manouchehr Salehi1, M. Shariyat2
1Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran
2Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran

Tóm tắt

Từ khóa


Tài liệu tham khảo

Miyamoto Y., Kaysser W.A., Rabin B.H.: Functionally Graded Materials: Design, Processing and Applications. Kluwer, Dordrecht (1999)

Suresh S., Mortensen A.: Functionally Graded Materials. Institute of Materials, IOM Communications, London (1998)

Banks-Sills L., Rami E., Yuri B.: Modeling of functionally graded materials in dynamic analyses. Compos. Part B Eng. 33, 7–15 (2002)

Tornabene F.: Vibration analysis of functionally graded conical, cylindrical and annular shell structures with a four-parameter power-law distribution. Comput. Methods Appl. Mech. Eng. 198, 2911–2935 (2009)

Akbarzadeh A.H., Abbasi M., Hosseini Zad S.K., Eslami M.R.: Dynamic analysis of functionally graded plates using the hybrid Fourier–Laplace transform under thermo mechanical loading. Meccanica 46, 1373–1392 (2011)

Tornabene F., Viola E., Inman D.J.: 2-D differential quadrature solution for vibration analysis of functionally graded conical, cylindrical and annular shell structures. J. Sound Vib. 328, 259–290 (2009)

Viola E., Tornabene F.: Free vibrations of three parameter functionally graded parabolic panels of revolution. Mech. Res. Commun. 36, 587–594 (2009)

Malekzadeh P., Golbahar Haghighi M.R., Atashi M.M.: Free vibration analysis of elastically supported functionally graded annular plates subjected to thermal environment. Meccanica 46, 893–913 (2011)

Tornabene F., Liverani A., Caligiana G.: FGM and laminated doubly curved shells and panels of revolution with a free-form meridian: a 2-D GDQ solution for free vibrations. Int. J. Mech. Sci. 53, 446–470 (2011)

Asemi K., Salehi M., Akhlaghi M.: Elastic solution of a two-dimensional functionally graded thick truncated cone with finite length under hydrostatic combined loads. Acta Mech. 217, 119–134 (2011)

Shariyat M., Alipour M.M.: Differential transform vibration and modal stress analyses of circular plates made of two-directional functionally graded materials resting on elastic foundations. Arch. Appl. Mech. 81, 1289–1306 (2011)

Rahmati Nezhad Y., Asemi K., Akhlaghi M.: Transient solution of temperature field in functionally graded hollow cylinder with finite length using multi layered approach. Int. J. Mech. Mater. Des. 7, 71–82 (2011)

Shao Z.S.: Mechanical and thermal stresses of a functionally graded circular hollow cylinder with finite length. Int. J. Press. Vessel. Pip. 82, 155–163 (2005)

Elishakoff I., Gentilini C., Viola E.: Three-dimensional analysis of an all-round clamped plate made of functionally graded materials. Acta Mech. 180, 21–36 (2005)

Liu C.F., Lee Y.T.: Finite element analysis of three-dimensional vibrations of thick circular and annular plates. J. Sound. Vib. 233, 63–80 (2000)

Ashrafi H., Bahadori M.R., Shariyat M.: Two-dimensional modeling of functionally graded viscoelastic materials using a boundary element approach. Adv. Mater. Res. 464, 570–574 (2012)

Cheng Z.Q., Batra R.C.: Three-dimensional thermoelastic deformations of a functionally graded elliptic plate. Compos. Part B 31, 97–106 (2000)

Prasad K.L., Rao A.V., Rao B.N.: Free vibration of simply supported and clamped elliptical plates. J. Sound Vib. 158, 383–386 (1992)

Wang C.M., Wang L., Liew K.M.: Vibration and buckling of super elliptical plates. J. Sound Vib. 171, 301–314 (1994)

Lim C.W., Kitipornchai S., Liew K.M.: A free-vibration analysis of doubly connected super-elliptical laminated composite plates. Compos. Sci. Technol. 58, 435–445 (1998)

Laura P.A.A., Gutiérrez R.H., Romanelli E.: Transverse vibrations of a thin elliptical plate with a concentric, circular free edge hole. J. Sound Vib. 246, 737–740 (2001)

Romashchenko V.A., Storozhuk V.N.: Theoretical analysis of strong changes in the shape of initially elliptic plates. Strength Mater. 34, 54–61 (2002)

Altekin M., Altay G.: Static analysis of point-supported super-elliptical plates. Arch. Appl. Mech. 78, 259–266 (2008)

Nallim L.G., Grossi R.O.: Natural frequencies of symmetrically laminated elliptical and circular plates. Int. J. Mech. Sci. 50, 1153–1167 (2008)

Yüce H., Wang C.Y.: Perturbation methods for moderately elliptical plates with a core. Acta Mech. 215, 105–114 (2010)

Lee Z.Y., Chen C.K., Hung C.I.: Upper and lower bounds of the solution for an elliptic plate problem using a genetic algorithm. Acta Mech. 157, 201–212 (2002)

Hsieh J.-J., Lee L.-T.: An inverse problem for a functionally graded elliptical plate with large deflection and slightly disturbed boundary. Int. J. Solids Struct. 43, 5981–5993 (2006)

Chakraverty S., Jindal R., Agarwal V.K.: Effect of non-homogeneity on natural frequencies of vibration of elliptic plates. Meccanica 42, 585–599 (2007)

Ceribasi S., Altay G., Dokmeci M.C.: Static analysis of super elliptical clamped plates by Galerkin’s method. Thin-Walled Struct. 46, 122–127 (2008)

Tang H.-W., Yang Y.-T., Chen C.-K.: Application of new double side approach method to the solution of super-elliptical plate problems. Acta Mech. 223, 745–753 (2012)

Ceribasi S.: Static and dynamic analyses of thin uniformly loaded super elliptical FGM plates. Mech. Adv. Mater. Struct. 19, 323–335 (2012)

Reddy J.N.: Analysis of functionally graded plates. Int. J. Numer. Methods Eng. 47, 663–684 (2000)

Croce L.D., Venini P.: Finite elements for functionally graded Reissner–Mindlin plates. Comput. Methods Appl. Mech. Eng. 193, 705–725 (2004)

Mechab I., Atmane H.A., Tounsi A., Belhadj H.A., Adda Bedia E.A.: A two variable refined plate theory for the bending analysis of functionally graded plates. Acta Mechanica Sinica 26, 941–949 (2010)

Orakdogen E., Kucukarslan S., Sofiyev A., Omurtag M.H.: Finite element analysis of functionally graded plates for coupling effect of extension and bending. Meccanica 45, 63–72 (2010)

Nguyen-Xuan H., Tran L.V., Thai C.H., Nguyen-Thoi T.: Analysis of functionally graded plates by an efficient finite element method with node-based strain smoothing. Thin-Walled Struct. 54, 1–18 (2012)

Kim J.H., Paulino G.H.: Isoparametric graded finite elements for nonhomogeneous isotropic and orthotropic materials. J. Appl. Mech. 69, 502–514 (2002)

Zhang Z., Paulino G.H.: Wave propagation and dynamic analysis of smoothly graded heterogeneous continua using graded finite elements. Int. J. Solids Struct. 44, 3601–3626 (2007)

Ashrafi, H., Asemi, K., Shariyat, M., Salehi, M.: Two-dimensional modeling of heterogeneous structures using graded finite element and boundary element methods. Meccanica (2012). doi: 10.1007/s11012-012-9623-5

Mori T., Tanaka K.: Average stress in matrix and average elastic energy of materials with misfitting inclusions. Acta Metall. 21, 571–574 (1973)

Zienkiewicz O.C., Taylor R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier, Oxford (2005)