Modeling the impact of common noise inputs on the network activity of retinal ganglion cells

Journal of Computational Neuroscience - Tập 33 - Trang 97-121 - 2011
Michael Vidne1, Yashar Ahmadian2, Jonathon Shlens3, Jonathan W. Pillow4, Jayant Kulkarni5, Alan M. Litke6, E. J. Chichilnisky3, Eero Simoncelli7, Liam Paninski2
1Department of Applied Physics & Applied Mathematics, Center for Theoretical Neuroscience, Columbia University, New York, USA
2Center for Theoretical Neuroscience, Columbia University, New York, USA
3The Salk Institute for Biological Studies, La Jolla, USA
4Center for Perceptual Systems, The University of Texas at Austin, Austin, USA
5Cold Spring Harbor Laboratory, Cold Spring Harbor, USA
6Santa Cruz Institute for Particle Physics, University of California, Santa Cruz, USA
7Howard Hughes Medical Institute, Center for Neural Science, and Courant Institute of Mathematical Sciences, New York University, New York, USA

Tóm tắt

Synchronized spontaneous firing among retinal ganglion cells (RGCs), on timescales faster than visual responses, has been reported in many studies. Two candidate mechanisms of synchronized firing include direct coupling and shared noisy inputs. In neighboring parasol cells of primate retina, which exhibit rapid synchronized firing that has been studied extensively, recent experimental work indicates that direct electrical or synaptic coupling is weak, but shared synaptic input in the absence of modulated stimuli is strong. However, previous modeling efforts have not accounted for this aspect of firing in the parasol cell population. Here we develop a new model that incorporates the effects of common noise, and apply it to analyze the light responses and synchronized firing of a large, densely-sampled network of over 250 simultaneously recorded parasol cells. We use a generalized linear model in which the spike rate in each cell is determined by the linear combination of the spatio-temporally filtered visual input, the temporally filtered prior spikes of that cell, and unobserved sources representing common noise. The model accurately captures the statistical structure of the spike trains and the encoding of the visual stimulus, without the direct coupling assumption present in previous modeling work. Finally, we examined the problem of decoding the visual stimulus from the spike train given the estimated parameters. The common-noise model produces Bayesian decoding performance as accurate as that of a model with direct coupling, but with significantly more robustness to spike timing perturbations.

Tài liệu tham khảo

Agresti, A. (2002). Categorical data analysis. In Wiley series in probability and mathematical statistics. Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). A decoder-based spike train metric for analyzing the neural code in the retina. In COSYNE09. Ahmadian, Y., Pillow, J. W., & Paninski, L. (2011). Efficient Markov chain Monte Carlo methods for decoding neural spike trains. Neural Computation, 23, 46–96. Arnett, D. (1978). Statistical dependence between neighboring retinal ganglion cells in goldfish. Experimental Brain Research, 32(1), 49–53. Bickel, P., & Doksum, K. (2001). Mathematical statistics: Basic ideas and selected topics. Prentice Hall. Brivanlou, I., Warland, D., & Meister, M. (1998). Mechanisms of concerted firing among retinal ganglion cells. Neuron, 20(3), 527–539. Brody, C. (1999). Correlations without synchrony. Neural Computation, 11, 1537–1551. Cafaro, J., & Rieke, F. (2010). Noise correlations improve response fidelity and stimulus encoding. Nature, 468(7326), 964–967. Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275. Cocco, S., Leibler, S., & Monasson, R. (2009). Neuronal couplings between retinal ganglion cells inferred by efficient inverse statistical physics methods. Proceedings of the National Academy of Sciences, 106(33), 14058. Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288. Dacey, D., & Brace, S. (1992). A coupled network for parasol but not midget ganglion cells in the primate retina. Visual Neuroscience, 9(3–4), 279–290. DeVries, S. H. (1999). Correlated firing in rabbit retinal ganglion cells. Journal of Neurophysiology, 81(2), 908–920. Dombeck, D., Khabbaz, A., Collman, F., Adelman, T., & Tank, D. (2007). Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron, 56(1), 43–57. Dorn, J. D., & Ringach, D. L. (2003). Estimating membrane voltage correlations from extracellular spike trains. Journal of Neurophysiology, 89(4), 2271–2278. Fahrmeir, L., & Kaufmann, H. (1991). On Kalman filtering, posterior mode estimation and fisher scoring in dynamic exponential family regression. Metrika, 38, 37–60. Fahrmeir, L., & Tutz, G. (1994). Multivariate statistical modelling based on generalized linear models. Springer. Field, G., Gauthier, J., Sher, A., Greschner, M., Machado, T., Jepson, L., et al. (2010). Mapping a neural circuit: A complete input-output diagram in the primate retina. Nature, 467, 673–677. Frechette, E., Sher, A., Grivich, M., Petrusca, D., Litke, A., & Chichilnisky, E. (2005). Fidelity of the ensemble code for visual motion in primate retina. Journal of Neurophysiology, 94(1), 119. Gauthier, J., Field, G., Sher, A., Greschner, M., Shlens, J., Litke, A., et al. (2009). Receptive fields in primate retina are coordinated to sample visual space more uniformly. PLoS Biology, 7(4), e1000,063. Greschner, M., Shlens, J., Bakolitsa, C., Field, G., Gauthier, J., Jepson, L., et al. (2011). Correlated firing among major ganglion cell types in primate retina. The Journal of Physiology, 589(1), 75. Gutnisky, D., & Josic, K. (2010). Generation of spatiotemporally correlated spike trains and local field potentials using a multivariate autoregressive process. Journal of Neurophysiology, 103(5), 2912. Harris, K., Csicsvari, J., Hirase, H., Dragoi, G., & Buzsaki, G. (2003). Organization of cell assemblies in the hippocampus. Nature, 424, 552–556. Hayes, M. H. (1996). Statistical digital signal processing and modeling. Wiley. Haykin, S. (2001). Adaptive filter theory. Pearson Education India. Higham, N. (1988). Computing a nearest symmetric positive semidefinite matrix. Linear Algebra and its Applications, 103, 103–118. Iyengar, S. (2001). The analysis of multiple neural spike trains. In Advances in methodological and applied aspects of probability and statistics, Gordon and Breach (pp. 507–524). Kass, R., & Raftery, A. (1995). Bayes factors. Journal of the American Statistical Association, 90, 773–795. Keat, J., Reinagel, P., Reid, R., & Meister, M. (2001). Predicting every spike: A model for the responses of visual neurons. Neuron, 30, 803–817. Kelly, R., Smith, M., Samonds, J., Kohn, A., Bonds, J., Movshon, A. B., et al. (2007). Comparison of recordings from microelectrode arrays and single electrodes in the visual cortex. Journal of Neuroscience, 27, 261–264. Kerr, J. N. D., Greenberg, D., & Helmchen, F. (2005). Imaging input and output of neocortical networks in vivo. PNAS, 102(39), 14063–14068. Koyama, S., & Paninski, L. (2010). Efficient computation of the map path and parameter estimation in integrate-and-fire and more general state-space models. Journal of Computational Neuroscience, 29, 89–105. Krumin, M., & Shoham, S. (2009). Generation of spike trains with controlled auto-and cross-correlation functions. Neural Computation, 21(6), 1642–1664. Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407. Latham, P., & Nirenberg, S. (2005). Synergy, redundancy, and independence in population codes, revisited. The Journal of Neuroscience, 25(21), 5195. Lawhern, V., Wu, W., Hatsopoulos, N., & Paninski, L. (2010). Population decoding of motor cortical activity using a generalized linear model with hidden states. Journal of Neuroscience Methods, 189(2), 267–280. Litke, A., Bezayiff N., Chichilnisky E., Cunningham W., Dabrowski W., Grillo A., et al. (2004). What does the eye tell the brain? Development of a system for the large scale recording of retinal output activity. IEEE Transactions on Nuclear Science, 51, 1434–1440. Macke, J., Berens, P., Ecker, A., Tolias, A., & Bethge, M. (2009). Generating spike trains with specified correlation coefficients. Neural Computation, 21, 397–423. MacLean, J., Watson, B., Aaron, G., & Yuste, R. (2005). Internal dynamics determine the cortical response to thalamic stimulation. Neuron, 48, 811–823. Martignon, L., Deco, G., Laskey, K., Diamond, M., Freiwald, W., & Vaadia, E. (2000). Neural coding: Higher-order temporal patterns in the neuro-statistics of cell assemblies. Neural Computation, 12, 2621–2653. Masmoudi, K., Antonini, M., & Kornprobst, P. (2010). Encoding and decoding stimuli using a biological realistic model: The non-determinism in spike timings seen as a dither signal. In Proc of research in encoding and decoding of neural ensembles. Mastronarde, D. (1983). Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to x-and y-cells. Journal of Neurophysiology, 49(2), 303. McCulloch, C., Searle, S., & Neuhaus, J. (2008). Generalized, linear, and mixed models. In Wiley series in probability and statistics. Meister, M., Lagnado, L., & Baylor, D. (1995). Concerted signaling by retinal ganglion cells. Science, 270(5239), 1207. Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. The Annals of Applied Statistics, 5(2B), 1229–1261. Nicolelis, M., Dimitrov, D., Carmena, J., Crist, R., Lehew, G., Kralik, J., et al. (2003). Chronic, multisite, multielectrode recordings in macaque monkeys. PNAS, 100, 11,041–11,046. Niebur, E. (2007). Generation of synthetic spike trains with defined pairwise correlations. Neural Computation, 19(7), 1720–1738. Nirenberg, S., Carcieri, S., Jacobs, A., & Latham, P. (2002). Retinal ganglion cells act largely as independent encoders. Nature, 411, 698–701. Nykamp, D. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal on Applied Mathematics, 65, 2005–2032. Nykamp, D. (2008). Exploiting history-dependent effects to infer network connectivity. SIAM Journal on Applied Mathematics, 68(2), 354–391. Nykamp, D. (2009). A stimulus-dependent connectivity analysis of neuronal networks. Journal of Mathematical Biology, 59(2), 147–173. Ohki, K., Chung, S., Kara, P., Hübener, M., Bonhoeffer, T., & Reid, R. (2006). Highly ordered arrangement of single neurons in orientation pinwheels. Nature, 442(7105), 925–928. Okatan, M., Wilson, M., & Brown, E. (2005). Analyzing functional connectivity using a network likelihood model of ensemble neural spiking activity. Neural Computation, 17, 1927–1961. Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262. Paninski, L. (2005). Log-concavity results on Gaussian process methods for supervised and unsupervised learning. Advances in Neural Information Processing Systems 17. Paninski, L., Pillow, J., & Simoncelli, E. (2004). Maximum likelihood estimation of a stochastic integrate-and-fire neural model. Neural Computation, 16, 2533–2561. Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama Rad, K., Vidne, M., et al. (2010) A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126. Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. In NIPS. Pillow, J., Paninski, L., Uzzell, V., Simoncelli, E., & Chichilnisky, E. (2005). Prediction and decoding of retinal ganglion cell responses with a probabilistic spiking model. Journal of Neuroscience, 25, 11,003–11,013. Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., et al. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999. Pillow, J., Ahmadian, Y., & Paninski, L. (2011). Model-based decoding, information estimation, and change-point detection in multi-neuron spike trains. Neural Computation, 23, 1–45. Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764. de la Rocha, J., Doiron, B., Shea-Brown, E., Josic, K., & Reyes, A. (2007). Correlation between neural spike trains increases with firing rate. Nature, 448, 802–806. Rybicki, G., & Hummer, D. (1991). An accelerated lambda iteration method for multilevel radiative transfer, appendix b: Fast solution for the diagonal elements of the inverse of a tridiagonal matrix. Astronomy and Astrophysics, 245, 171. Schneidman, E., Bialek, W., & Berry, M. (2003). Synergy, redundancy, and independence in population codes. The Journal of Neuroscience, 23(37), 11,539. Schneidman, E., Berry, M., Segev, R., & Bialek, W. (2006). Weak pairwise correlations imply strongly correlated network states in a neural population. Nature, 440, 1007–1012. Schnitzer, M., & Meister, M. (2003). Multineuronal firing patterns in the signal from eye to brain. Neuron, 37, 499–511. Segev, R., Goodhouse, J., Puchalla, J., & Berry, M. (2004). Recording spikes from a large fraction of the ganglion cells in a retinal patch. Nature Neuroscience, 7, 1154–1161. Shlens, J., Field, G., Gauthier, J., Grivich, M., Petrusca, D., Sher, A., et al. (2006). The structure of multi-neuron firing patterns in primate retina. The Journal of Neuroscience, 26(32), 8254. Shlens, J., Field, G. D., Gauthier, J. L., Greschner, M., Sher, A., Litke, A. M., et al. (2009). The structure of large-scale synchronized firing in primate retina. Journal of Neuroscience, 29(15), 5022–5031. doi:10.1523/JNEUROSCI.5187-08.2009 Smith, A., & Brown, E. (2003). Estimating a state-space model from point process observations. Neural Computation, 15, 965–991. Stein, R., Weber, D., Aoyagi, Y., Prochazka, A., Wagenaar, J., Shoham, S., et al. (2004). Coding of position by simultaneously recorded sensory neurones in the cat dorsal root ganglion. The Journal of Physiology, 560(3), 883–896. Stevenson, I., Rebesco, J., Miller, L., & Körding, K. (2008). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18(6), 582–588. Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Körding, K. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions On Neural Systems And Rehabilitation Engineering, 17(3), 203. Trong, P., & Rieke, F. (2008). Origin of correlated activity between parasol retinal ganglion cells. Nature Neuroscience, 11(11), 1343–1351. Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089. Usrey, W., & Reid, R. (1999). Synchronous activity in the visual system. Annual Review of Physiology, 61(1), 435–456. Utikal, K. (1997). A new method for detecting neural interconnectivity. Biological Cyberkinetics, 76, 459–470. Van Pelt, J., Vajda, I., Wolters, P., Corner, M., & Ramakers, G. (2005). Dynamics and plasticity in developing neuronal networks in vitro. Progress in Brain Research, 147, 173–188. Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., et al. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. In Frontiers in systems neuroscience conference abstract: Computational and systems neuroscience 2009. Warland, D., Reinagel, P., & Meister, M. (1997). Decoding visual information from a population of retinal ganglion cells. Journal of Neurophysiology, 78, 2336–2350. Wilson, J. M., Dombeck, D. A., Diaz-Rios, M., Harris-Warrick, R. M., & Brownstone, R. M. (2007). Two-photon calcium imaging of network activity in XFP-expressing neurons in the mouse. Journal of Neurophysiology, 97(4), 3118–3125. Wu, W., Kulkarni, J., Hatsopoulos, N., & Paninski, L. (2008). Neural decoding of goal-directed movements using a linear statespace model with hidden states. In Computational and systems neuroscience meeting. Yu, B., Afshar, A., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2006). Extracting dynamical structure embedded in neural activity. In NIPS. Yu, B., Cunningham, J., Santhanam, G., Ryu, S., Shenoy, K., & Sahani, M. (2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population activity. In NIPS. Zhang, K., Ginzburg, I., McNaughton, B., & Sejnowski, T. (1998). Interpreting neuronal population activity by reconstruction: Unified framework with application to hippocampal place cells. Journal of Neurophysiology, 79, 1017–1044.