Stress-Activated Chaperones: A First Line of Defense

Trends in Biochemical Sciences - Tập 42 - Trang 899-913 - 2017
Wilhelm Voth1,2, Ursula Jakob1,3
1Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109 USA
2Department of Molecular Biology, Universitätsmedizin Göttingen, 37073 Göttingen, Germany
3Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA

Tài liệu tham khảo

Klebanoff, 2013, Myeloperoxidase: a front-line defender against phagocytosed microorganisms, J. Leukoc. Biol., 93, 185, 10.1189/jlb.0712349 Lee, 2012, Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state?, Front. Immunol., 3, 140, 10.3389/fimmu.2012.00140 Grasberger, 2013, Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice, Gastroenterology, 145, 1045, 10.1053/j.gastro.2013.07.011 Goto, 1990, Acid-induced folding of proteins, Proc. Natl. Acad. Sci. U. S. A., 87, 573, 10.1073/pnas.87.2.573 Weijers, 2003, Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics, Protein Sci., 12, 2693, 10.1110/ps.03242803 Morano, 2012, The response to heat shock and oxidative stress in Saccharomyces cerevisiae, Genetics, 190, 1157, 10.1534/genetics.111.128033 Marengo, 2016, Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy, Oxid. Med. Cell Longev., 2016, 10.1155/2016/6235641 Zhao, 2013, Oxidative stress and the pathogenesis of Alzheimer’s disease, Oxid. Med. Cell Longev., 2013, 10.1155/2013/316523 Maritim, 2003, Diabetes, oxidative stress, and antioxidants: a review, J. Biochem. Mol. Toxicol., 17, 24, 10.1002/jbt.10058 Knoefler, 2014, About the dangers, costs and benefits of living an aerobic lifestyle, Biochem. Soc. Trans., 42, 917, 10.1042/BST20140108 Aseervatham, 2013, Environmental factors and unhealthy lifestyle influence oxidative stress in humans – an overview, Environ. Sci. Pollut. Res. Int., 20, 4356, 10.1007/s11356-013-1748-0 Verghese, 2012, Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system, Microbiol. Mol. Biol. Rev., 76, 115, 10.1128/MMBR.05018-11 Dukan, 1996, Hypochlorous acid activates the heat shock and SoxRS systems of Escherichia coli, Appl. Environ. Microbiol., 62, 4003, 10.1128/AEM.62.11.4003-4008.1996 Pattison, 2001, Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds, Chem. Res. Toxicol., 14, 1453, 10.1021/tx0155451 Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antioxid. Redox Signal., 11, 997, 10.1089/ars.2008.2285 Shenton, 2006, Global translational responses to oxidative stress impact upon multiple levels of protein synthesis, J. Biol. Chem., 281, 29011, 10.1074/jbc.M601545200 Colussi, 2000, H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis, FASEB J., 14, 2266, 10.1096/fj.00-0074com Winter, 2005, Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33, Mol. Cell, 17, 381, 10.1016/j.molcel.2004.12.027 Gray, 2014, Polyphosphate is a primordial chaperone, Mol. Cell, 53, 689, 10.1016/j.molcel.2014.01.012 Jakob, 1999, Chaperone activity with a redox switch, Cell, 96, 341, 10.1016/S0092-8674(00)80547-4 Zheng, 1998, Activation of the OxyR transcription factor by reversible disulfide bond formation, Science, 279, 1718, 10.1126/science.279.5357.1718 Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. U. S. A., 105, 8197, 10.1073/pnas.0707723105 Yang, 2016, The expanding landscape of the thiol redox proteome, Mol. Cell. Proteomics, 15, 1, 10.1074/mcp.O115.056051 Lindemann, 2013, Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress, J. Biol. Chem., 288, 19698, 10.1074/jbc.M113.457556 Janda, 2004, The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism, Structure, 12, 1901, 10.1016/j.str.2004.08.003 Maret, 2006, Zinc coordination environments in proteins as redox sensors and signal transducers, Antioxid. Redox Signal., 8, 1419, 10.1089/ars.2006.8.1419 Haslbeck, 2005, Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104, J. Biol. Chem., 280, 23861, 10.1074/jbc.M502697200 Winter, 2008, Bleach activates a redox-regulated chaperone by oxidative protein unfolding, Cell, 135, 691, 10.1016/j.cell.2008.09.024 Vijayalakshmi, 2001, The 2.2Å crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity, Structure, 9, 367, 10.1016/S0969-2126(01)00597-4 Cremers, 2014, Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo, Proc. Natl. Acad. Sci. U. S. A., 111, E1610, 10.1073/pnas.1401941111 Ilbert, 2007, The redox-switch domain of Hsp33 functions as dual stress sensor, Nat. Struct. Mol. Biol., 14, 556, 10.1038/nsmb1244 Cremers, 2010, Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone, J. Biol. Chem., 285, 11243, 10.1074/jbc.M109.084350 Cortese, 2008, Intrinsic disorder in scaffold proteins: getting more from less, Prog. Biophys. Mol. Biol., 98, 85, 10.1016/j.pbiomolbio.2008.05.007 Bardwell, 2012, Conditional disorder in chaperone action, Trends Biochem. Sci., 37, 517, 10.1016/j.tibs.2012.08.006 Reichmann, 2012, Order out of disorder: working cycle of an intrinsically unfolded chaperone, Cell, 148, 947, 10.1016/j.cell.2012.01.045 Groitl, 2016, Protein unfolding as a switch from self-recognition to high-affinity client binding, Nat. Commun., 7, 10.1038/ncomms10357 Hoffmann, 2004, Identification of a redox-regulated chaperone network, EMBO J., 23, 160, 10.1038/sj.emboj.7600016 Bruel, 2012, Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones, J. Biol. Chem., 287, 44435, 10.1074/jbc.M112.418525 Wholey, 2012, Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae, Mol. Microbiol., 83, 981, 10.1111/j.1365-2958.2012.07982.x Powis, 2013, Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked, J. Cell Sci., 126, 473, 10.1242/jcs.112151 Voth, 2014, The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions, Mol. Cell, 56, 116, 10.1016/j.molcel.2014.08.017 Borgese, 2003, The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane, J. Cell Biol., 161, 1013, 10.1083/jcb.200303069 Schuldiner, 2008, The GET complex mediates insertion of tail-anchored proteins into the ER membrane, Cell, 134, 634, 10.1016/j.cell.2008.06.025 Shao, 2011, Membrane protein insertion at the endoplasmic reticulum, Annu. Rev. Cell Dev. Biol., 27, 25, 10.1146/annurev-cellbio-092910-154125 Mariappan, 2010, A ribosome-associating factor chaperones tail-anchored membrane proteins, Nature, 466, 1120, 10.1038/nature09296 Mateja, 2009, The structural basis of tail-anchored membrane protein recognition by Get3, Nature, 461, 361, 10.1038/nature08319 Stefer, 2011, Structural basis for tail-anchored membrane protein biogenesis by the Get3–receptor complex, Science, 333, 758, 10.1126/science.1207125 Suloway, 2009, Model for eukaryotic tail-anchored protein binding based on the structure of Get3, Proc. Natl. Acad. Sci. U. S. A., 106, 14849, 10.1073/pnas.0907522106 Stefanovic, 2007, Identification of a targeting factor for posttranslational membrane protein insertion into the ER, Cell, 128, 1147, 10.1016/j.cell.2007.01.036 Mukhopadhyay, 2006, Targeted disruption of the mouse Asna1 gene results in embryonic lethality, FEBS Lett., 580, 3889, 10.1016/j.febslet.2006.06.017 Xing, 2017, Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance, Proc. Natl. Acad. Sci. U. S. A., 114, E1544, 10.1073/pnas.1619525114 Rivera-Monroy, 2016, Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo, Sci. Rep., 6, 39464, 10.1038/srep39464 Aviram, 2016, The SND proteins constitute an alternative targeting route to the endoplasmic reticulum, Nature, 540, 134, 10.1038/nature20169 Rabu, 2008, A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum, J. Biol. Chem., 283, 27504, 10.1074/jbc.M804591200 Shen, 2003, The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance, Biometals, 16, 369, 10.1023/A:1022504311669 Metz, 2006, The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol, J. Biol. Chem., 281, 410, 10.1074/jbc.M507481200 Tsutsumishita, 1998, Involvement of H2O2 production in cisplatin-induced nephrotoxicity, Biochem. Biophys. Res. Commun., 242, 310, 10.1006/bbrc.1997.7962 Marullo, 2013, Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions, PLoS One, 8, e81162, 10.1371/journal.pone.0081162 Hemmingsson, 2010, ASNA-1 activity modulates sensitivity to cisplatin, Cancer Res., 70, 10321, 10.1158/0008-5472.CAN-10-1548 Muller, 2014, Activation of RidA chaperone function by N-chlorination, Nat. Commun., 5, 10.1038/ncomms6804 Lambrecht, 2012, Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions, J. Biol. Chem., 287, 3454, 10.1074/jbc.M111.304477 Wyatt, 2014, Hypochlorite-induced structural modifications enhance the chaperone activity of human alpha2-macroglobulin, Proc. Natl. Acad. Sci. U. S. A., 111, E2081, 10.1073/pnas.1403379111 Smith, 2003, The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions, J. Food Prot., 66, 1292, 10.4315/0362-028X-66.7.1292 Koebnik, 2000, Structure and function of bacterial outer membrane proteins: barrels in a nutshell, Mol. Microbiol., 37, 239, 10.1046/j.1365-2958.2000.01983.x Hong, 2005, Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation, J. Biol. Chem., 280, 27029, 10.1074/jbc.M503934200 Gajiwala, 2000, HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria, J. Mol. Biol., 295, 605, 10.1006/jmbi.1999.3347 Tapley, 2009, Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding, Proc. Natl. Acad. Sci. U. S. A., 106, 5557, 10.1073/pnas.0811811106 Zhang, 2011, Probing pH-dependent dissociation of HdeA dimers, J. Am. Chem. Soc., 133, 19393, 10.1021/ja2060066 Foit, 2013, Chaperone activation by unfolding, Proc. Natl. Acad. Sci. U. S. A., 110, E1254, 10.1073/pnas.1222458110 Garrison, 2014, NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation, Protein Sci., 23, 167, 10.1002/pro.2402 Tapley, 2010, Protein refolding by pH-triggered chaperone binding and release, Proc. Natl. Acad. Sci. U. S. A., 107, 1071, 10.1073/pnas.0911610107 Kern, 2007, Escherichia coli HdeB is an acid stress chaperone, J. Bacteriol., 189, 603, 10.1128/JB.01522-06 Dahl, 2015, HdeB functions as an acid-protective chaperone in bacteria, J. Biol. Chem., 290, 65, 10.1074/jbc.M114.612986 Ding, 2015, HdeB chaperone activity is coupled to its intrinsic dynamic properties, Sci. Rep., 5, 16856, 10.1038/srep16856 Carra, 2017, The growing world of small heat shock proteins: from structure to functions, Cell Stress Chaperones, 22, 601, 10.1007/s12192-017-0787-8 Haslbeck, 1999, Hsp26: a temperature-regulated chaperone, EMBO J., 18, 6744, 10.1093/emboj/18.23.6744 Rajagopal, 2015, A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis, Elife, 4, 07304, 10.7554/eLife.07304 Clouser, 2017, pH-dependent structural modulation is conserved in the human small heat shock protein HSBP1, Cell Stress Chaperones, 22, 569, 10.1007/s12192-017-0783-z Stengel, 2010, Quaternary dynamics and plasticity underlie small heat shock protein chaperone function, Proc. Natl. Acad. Sci. U. S. A., 107, 2007, 10.1073/pnas.0910126107 Ungelenk, 2016, Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding, Nat. Commun., 7, 10.1038/ncomms13673 Treweek, 2015, Small heat-shock proteins: important players in regulating cellular proteostasis, Cell. Mol. Life Sci., 72, 429, 10.1007/s00018-014-1754-5 Harper, 2017, An atlas of peroxiredoxins created using an active site profile-based approach to functionally relevant clustering of proteins, PLoS Comput. Biol., 13, e1005284, 10.1371/journal.pcbi.1005284 Poole, 2011, Overview of peroxiredoxins in oxidant defense and redox regulation, Curr. Protoc. Toxicol., 10.1002/0471140856.tx0709s49 Rhee, 2011, Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones, Antioxid. Redox Signal., 15, 781, 10.1089/ars.2010.3393 Jang, 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function, Cell, 117, 625, 10.1016/j.cell.2004.05.002 Saccoccia, 2012, Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin, Structure, 20, 429, 10.1016/j.str.2012.01.004 Teixeira, 2015, Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum, Proc. Natl. Acad. Sci. U. S. A., 112, E616, 10.1073/pnas.1419682112 Kim, 2009, Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress, Plant Sci., 177, 227, 10.1016/j.plantsci.2009.05.010 Wang, 2012, Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4, Biochem. J., 441, 113, 10.1042/BJ20110380 Castro, 2011, Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity, PLoS Pathog., 7, e1002325, 10.1371/journal.ppat.1002325 Stadtman, 2003, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207, 10.1007/s00726-003-0011-2 Winterbourn, 2013, Redox reactions and microbial killing in the neutrophil phagosome, Antioxid. Redox Signal., 18, 642, 10.1089/ars.2012.4827 Antelmann, 2011, Thiol-based redox switches and gene regulation, Antioxid. Redox Signal., 14, 1049, 10.1089/ars.2010.3400 Uversky, 2015, The intrinsic disorder alphabet. III. Dual personality of serine, Intrinsically Disord. Proteins, 3, e1027032, 10.1080/21690707.2015.1027032 Deng, 2012, A comprehensive overview of computational protein disorder prediction methods, Mol. Biosyst., 8, 114, 10.1039/C1MB05207A Hsu, 2012, Intrinsic protein disorder and protein–protein interactions, Pac. Symp. Biocomput., 116 Koldewey, 2016, Forces driving chaperone action, Cell, 166, 369, 10.1016/j.cell.2016.05.054 Tompa, 2004, The role of structural disorder in the function of RNA and protein chaperones, FASEB J., 18, 1169, 10.1096/fj.04-1584rev Haslbeck, 2005, Some like it hot: the structure and function of small heat-shock proteins, Nat. Struct. Mol. Biol., 12, 842, 10.1038/nsmb993 Basha, 2012, Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions, Trends Biochem. Sci., 37, 106, 10.1016/j.tibs.2011.11.005 Groitl, 2017, Pseudomonas aeruginosa defense systems against microbicidal oxidants, Mol. Microbiol., 10.1111/mmi.13768