Stress-Activated Chaperones: A First Line of Defense
Tài liệu tham khảo
Klebanoff, 2013, Myeloperoxidase: a front-line defender against phagocytosed microorganisms, J. Leukoc. Biol., 93, 185, 10.1189/jlb.0712349
Lee, 2012, Opposing roles for heat and heat shock proteins in macrophage functions during inflammation: a function of cell activation state?, Front. Immunol., 3, 140, 10.3389/fimmu.2012.00140
Grasberger, 2013, Dual oxidases control release of hydrogen peroxide by the gastric epithelium to prevent Helicobacter felis infection and inflammation in mice, Gastroenterology, 145, 1045, 10.1053/j.gastro.2013.07.011
Goto, 1990, Acid-induced folding of proteins, Proc. Natl. Acad. Sci. U. S. A., 87, 573, 10.1073/pnas.87.2.573
Weijers, 2003, Heat-induced denaturation and aggregation of ovalbumin at neutral pH described by irreversible first-order kinetics, Protein Sci., 12, 2693, 10.1110/ps.03242803
Morano, 2012, The response to heat shock and oxidative stress in Saccharomyces cerevisiae, Genetics, 190, 1157, 10.1534/genetics.111.128033
Marengo, 2016, Redox homeostasis and cellular antioxidant systems: crucial players in cancer growth and therapy, Oxid. Med. Cell Longev., 2016, 10.1155/2016/6235641
Zhao, 2013, Oxidative stress and the pathogenesis of Alzheimer’s disease, Oxid. Med. Cell Longev., 2013, 10.1155/2013/316523
Maritim, 2003, Diabetes, oxidative stress, and antioxidants: a review, J. Biochem. Mol. Toxicol., 17, 24, 10.1002/jbt.10058
Knoefler, 2014, About the dangers, costs and benefits of living an aerobic lifestyle, Biochem. Soc. Trans., 42, 917, 10.1042/BST20140108
Aseervatham, 2013, Environmental factors and unhealthy lifestyle influence oxidative stress in humans – an overview, Environ. Sci. Pollut. Res. Int., 20, 4356, 10.1007/s11356-013-1748-0
Verghese, 2012, Biology of the heat shock response and protein chaperones: budding yeast (Saccharomyces cerevisiae) as a model system, Microbiol. Mol. Biol. Rev., 76, 115, 10.1128/MMBR.05018-11
Dukan, 1996, Hypochlorous acid activates the heat shock and SoxRS systems of Escherichia coli, Appl. Environ. Microbiol., 62, 4003, 10.1128/AEM.62.11.4003-4008.1996
Pattison, 2001, Absolute rate constants for the reaction of hypochlorous acid with protein side chains and peptide bonds, Chem. Res. Toxicol., 14, 1453, 10.1021/tx0155451
Brandes, 2009, Thiol-based redox switches in eukaryotic proteins, Antioxid. Redox Signal., 11, 997, 10.1089/ars.2008.2285
Shenton, 2006, Global translational responses to oxidative stress impact upon multiple levels of protein synthesis, J. Biol. Chem., 281, 29011, 10.1074/jbc.M601545200
Colussi, 2000, H2O2-induced block of glycolysis as an active ADP-ribosylation reaction protecting cells from apoptosis, FASEB J., 14, 2266, 10.1096/fj.00-0074com
Winter, 2005, Severe oxidative stress causes inactivation of DnaK and activation of the redox-regulated chaperone Hsp33, Mol. Cell, 17, 381, 10.1016/j.molcel.2004.12.027
Gray, 2014, Polyphosphate is a primordial chaperone, Mol. Cell, 53, 689, 10.1016/j.molcel.2014.01.012
Jakob, 1999, Chaperone activity with a redox switch, Cell, 96, 341, 10.1016/S0092-8674(00)80547-4
Zheng, 1998, Activation of the OxyR transcription factor by reversible disulfide bond formation, Science, 279, 1718, 10.1126/science.279.5357.1718
Leichert, 2008, Quantifying changes in the thiol redox proteome upon oxidative stress in vivo, Proc. Natl. Acad. Sci. U. S. A., 105, 8197, 10.1073/pnas.0707723105
Yang, 2016, The expanding landscape of the thiol redox proteome, Mol. Cell. Proteomics, 15, 1, 10.1074/mcp.O115.056051
Lindemann, 2013, Redox proteomics uncovers peroxynitrite-sensitive proteins that help Escherichia coli to overcome nitrosative stress, J. Biol. Chem., 288, 19698, 10.1074/jbc.M113.457556
Janda, 2004, The crystal structure of the reduced, Zn2+-bound form of the B. subtilis Hsp33 chaperone and its implications for the activation mechanism, Structure, 12, 1901, 10.1016/j.str.2004.08.003
Maret, 2006, Zinc coordination environments in proteins as redox sensors and signal transducers, Antioxid. Redox Signal., 8, 1419, 10.1089/ars.2006.8.1419
Haslbeck, 2005, Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104, J. Biol. Chem., 280, 23861, 10.1074/jbc.M502697200
Winter, 2008, Bleach activates a redox-regulated chaperone by oxidative protein unfolding, Cell, 135, 691, 10.1016/j.cell.2008.09.024
Vijayalakshmi, 2001, The 2.2Å crystal structure of Hsp33: a heat shock protein with redox-regulated chaperone activity, Structure, 9, 367, 10.1016/S0969-2126(01)00597-4
Cremers, 2014, Bile salts act as effective protein-unfolding agents and instigators of disulfide stress in vivo, Proc. Natl. Acad. Sci. U. S. A., 111, E1610, 10.1073/pnas.1401941111
Ilbert, 2007, The redox-switch domain of Hsp33 functions as dual stress sensor, Nat. Struct. Mol. Biol., 14, 556, 10.1038/nsmb1244
Cremers, 2010, Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone, J. Biol. Chem., 285, 11243, 10.1074/jbc.M109.084350
Cortese, 2008, Intrinsic disorder in scaffold proteins: getting more from less, Prog. Biophys. Mol. Biol., 98, 85, 10.1016/j.pbiomolbio.2008.05.007
Bardwell, 2012, Conditional disorder in chaperone action, Trends Biochem. Sci., 37, 517, 10.1016/j.tibs.2012.08.006
Reichmann, 2012, Order out of disorder: working cycle of an intrinsically unfolded chaperone, Cell, 148, 947, 10.1016/j.cell.2012.01.045
Groitl, 2016, Protein unfolding as a switch from self-recognition to high-affinity client binding, Nat. Commun., 7, 10.1038/ncomms10357
Hoffmann, 2004, Identification of a redox-regulated chaperone network, EMBO J., 23, 160, 10.1038/sj.emboj.7600016
Bruel, 2012, Hsp33 controls elongation factor-Tu stability and allows Escherichia coli growth in the absence of the major DnaK and trigger factor chaperones, J. Biol. Chem., 287, 44435, 10.1074/jbc.M112.418525
Wholey, 2012, Hsp33 confers bleach resistance by protecting elongation factor Tu against oxidative degradation in Vibrio cholerae, Mol. Microbiol., 83, 981, 10.1111/j.1365-2958.2012.07982.x
Powis, 2013, Get3 is a holdase chaperone and moves to deposition sites for aggregated proteins when membrane targeting is blocked, J. Cell Sci., 126, 473, 10.1242/jcs.112151
Voth, 2014, The protein targeting factor Get3 functions as ATP-independent chaperone under oxidative stress conditions, Mol. Cell, 56, 116, 10.1016/j.molcel.2014.08.017
Borgese, 2003, The tale of tail-anchored proteins: coming from the cytosol and looking for a membrane, J. Cell Biol., 161, 1013, 10.1083/jcb.200303069
Schuldiner, 2008, The GET complex mediates insertion of tail-anchored proteins into the ER membrane, Cell, 134, 634, 10.1016/j.cell.2008.06.025
Shao, 2011, Membrane protein insertion at the endoplasmic reticulum, Annu. Rev. Cell Dev. Biol., 27, 25, 10.1146/annurev-cellbio-092910-154125
Mariappan, 2010, A ribosome-associating factor chaperones tail-anchored membrane proteins, Nature, 466, 1120, 10.1038/nature09296
Mateja, 2009, The structural basis of tail-anchored membrane protein recognition by Get3, Nature, 461, 361, 10.1038/nature08319
Stefer, 2011, Structural basis for tail-anchored membrane protein biogenesis by the Get3–receptor complex, Science, 333, 758, 10.1126/science.1207125
Suloway, 2009, Model for eukaryotic tail-anchored protein binding based on the structure of Get3, Proc. Natl. Acad. Sci. U. S. A., 106, 14849, 10.1073/pnas.0907522106
Stefanovic, 2007, Identification of a targeting factor for posttranslational membrane protein insertion into the ER, Cell, 128, 1147, 10.1016/j.cell.2007.01.036
Mukhopadhyay, 2006, Targeted disruption of the mouse Asna1 gene results in embryonic lethality, FEBS Lett., 580, 3889, 10.1016/j.febslet.2006.06.017
Xing, 2017, Loss of GET pathway orthologs in Arabidopsis thaliana causes root hair growth defects and affects SNARE abundance, Proc. Natl. Acad. Sci. U. S. A., 114, E1544, 10.1073/pnas.1619525114
Rivera-Monroy, 2016, Mice lacking WRB reveal differential biogenesis requirements of tail-anchored proteins in vivo, Sci. Rep., 6, 39464, 10.1038/srep39464
Aviram, 2016, The SND proteins constitute an alternative targeting route to the endoplasmic reticulum, Nature, 540, 134, 10.1038/nature20169
Rabu, 2008, A precursor-specific role for Hsp40/Hsc70 during tail-anchored protein integration at the endoplasmic reticulum, J. Biol. Chem., 283, 27504, 10.1074/jbc.M804591200
Shen, 2003, The Saccharomyces cerevisiae Arr4p is involved in metal and heat tolerance, Biometals, 16, 369, 10.1023/A:1022504311669
Metz, 2006, The yeast Arr4p ATPase binds the chloride transporter Gef1p when copper is available in the cytosol, J. Biol. Chem., 281, 410, 10.1074/jbc.M507481200
Tsutsumishita, 1998, Involvement of H2O2 production in cisplatin-induced nephrotoxicity, Biochem. Biophys. Res. Commun., 242, 310, 10.1006/bbrc.1997.7962
Marullo, 2013, Cisplatin induces a mitochondrial-ROS response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions, PLoS One, 8, e81162, 10.1371/journal.pone.0081162
Hemmingsson, 2010, ASNA-1 activity modulates sensitivity to cisplatin, Cancer Res., 70, 10321, 10.1158/0008-5472.CAN-10-1548
Muller, 2014, Activation of RidA chaperone function by N-chlorination, Nat. Commun., 5, 10.1038/ncomms6804
Lambrecht, 2012, Conserved YjgF protein family deaminates reactive enamine/imine intermediates of pyridoxal 5′-phosphate (PLP)-dependent enzyme reactions, J. Biol. Chem., 287, 3454, 10.1074/jbc.M111.304477
Wyatt, 2014, Hypochlorite-induced structural modifications enhance the chaperone activity of human alpha2-macroglobulin, Proc. Natl. Acad. Sci. U. S. A., 111, E2081, 10.1073/pnas.1403379111
Smith, 2003, The role of gastric acid in preventing foodborne disease and how bacteria overcome acid conditions, J. Food Prot., 66, 1292, 10.4315/0362-028X-66.7.1292
Koebnik, 2000, Structure and function of bacterial outer membrane proteins: barrels in a nutshell, Mol. Microbiol., 37, 239, 10.1046/j.1365-2958.2000.01983.x
Hong, 2005, Periplasmic protein HdeA exhibits chaperone-like activity exclusively within stomach pH range by transforming into disordered conformation, J. Biol. Chem., 280, 27029, 10.1074/jbc.M503934200
Gajiwala, 2000, HDEA, a periplasmic protein that supports acid resistance in pathogenic enteric bacteria, J. Mol. Biol., 295, 605, 10.1006/jmbi.1999.3347
Tapley, 2009, Structural plasticity of an acid-activated chaperone allows promiscuous substrate binding, Proc. Natl. Acad. Sci. U. S. A., 106, 5557, 10.1073/pnas.0811811106
Zhang, 2011, Probing pH-dependent dissociation of HdeA dimers, J. Am. Chem. Soc., 133, 19393, 10.1021/ja2060066
Foit, 2013, Chaperone activation by unfolding, Proc. Natl. Acad. Sci. U. S. A., 110, E1254, 10.1073/pnas.1222458110
Garrison, 2014, NMR-monitored titration of acid-stress bacterial chaperone HdeA reveals that Asp and Glu charge neutralization produces a loosened dimer structure in preparation for protein unfolding and chaperone activation, Protein Sci., 23, 167, 10.1002/pro.2402
Tapley, 2010, Protein refolding by pH-triggered chaperone binding and release, Proc. Natl. Acad. Sci. U. S. A., 107, 1071, 10.1073/pnas.0911610107
Kern, 2007, Escherichia coli HdeB is an acid stress chaperone, J. Bacteriol., 189, 603, 10.1128/JB.01522-06
Dahl, 2015, HdeB functions as an acid-protective chaperone in bacteria, J. Biol. Chem., 290, 65, 10.1074/jbc.M114.612986
Ding, 2015, HdeB chaperone activity is coupled to its intrinsic dynamic properties, Sci. Rep., 5, 16856, 10.1038/srep16856
Carra, 2017, The growing world of small heat shock proteins: from structure to functions, Cell Stress Chaperones, 22, 601, 10.1007/s12192-017-0787-8
Haslbeck, 1999, Hsp26: a temperature-regulated chaperone, EMBO J., 18, 6744, 10.1093/emboj/18.23.6744
Rajagopal, 2015, A conserved histidine modulates HSPB5 structure to trigger chaperone activity in response to stress-related acidosis, Elife, 4, 07304, 10.7554/eLife.07304
Clouser, 2017, pH-dependent structural modulation is conserved in the human small heat shock protein HSBP1, Cell Stress Chaperones, 22, 569, 10.1007/s12192-017-0783-z
Stengel, 2010, Quaternary dynamics and plasticity underlie small heat shock protein chaperone function, Proc. Natl. Acad. Sci. U. S. A., 107, 2007, 10.1073/pnas.0910126107
Ungelenk, 2016, Small heat shock proteins sequester misfolding proteins in near-native conformation for cellular protection and efficient refolding, Nat. Commun., 7, 10.1038/ncomms13673
Treweek, 2015, Small heat-shock proteins: important players in regulating cellular proteostasis, Cell. Mol. Life Sci., 72, 429, 10.1007/s00018-014-1754-5
Harper, 2017, An atlas of peroxiredoxins created using an active site profile-based approach to functionally relevant clustering of proteins, PLoS Comput. Biol., 13, e1005284, 10.1371/journal.pcbi.1005284
Poole, 2011, Overview of peroxiredoxins in oxidant defense and redox regulation, Curr. Protoc. Toxicol., 10.1002/0471140856.tx0709s49
Rhee, 2011, Multiple functions of peroxiredoxins: peroxidases, sensors and regulators of the intracellular messenger H2O2, and protein chaperones, Antioxid. Redox Signal., 15, 781, 10.1089/ars.2010.3393
Jang, 2004, Two enzymes in one; two yeast peroxiredoxins display oxidative stress-dependent switching from a peroxidase to a molecular chaperone function, Cell, 117, 625, 10.1016/j.cell.2004.05.002
Saccoccia, 2012, Moonlighting by different stressors: crystal structure of the chaperone species of a 2-Cys peroxiredoxin, Structure, 20, 429, 10.1016/j.str.2012.01.004
Teixeira, 2015, Mitochondrial peroxiredoxin functions as crucial chaperone reservoir in Leishmania infantum, Proc. Natl. Acad. Sci. U. S. A., 112, E616, 10.1073/pnas.1419682112
Kim, 2009, Oligomerization and chaperone activity of a plant 2-Cys peroxiredoxin in response to oxidative stress, Plant Sci., 177, 227, 10.1016/j.plantsci.2009.05.010
Wang, 2012, Structural insights into the peroxidase activity and inactivation of human peroxiredoxin 4, Biochem. J., 441, 113, 10.1042/BJ20110380
Castro, 2011, Leishmania mitochondrial peroxiredoxin plays a crucial peroxidase-unrelated role during infection: insight into its novel chaperone activity, PLoS Pathog., 7, e1002325, 10.1371/journal.ppat.1002325
Stadtman, 2003, Free radical-mediated oxidation of free amino acids and amino acid residues in proteins, Amino Acids, 25, 207, 10.1007/s00726-003-0011-2
Winterbourn, 2013, Redox reactions and microbial killing in the neutrophil phagosome, Antioxid. Redox Signal., 18, 642, 10.1089/ars.2012.4827
Antelmann, 2011, Thiol-based redox switches and gene regulation, Antioxid. Redox Signal., 14, 1049, 10.1089/ars.2010.3400
Uversky, 2015, The intrinsic disorder alphabet. III. Dual personality of serine, Intrinsically Disord. Proteins, 3, e1027032, 10.1080/21690707.2015.1027032
Deng, 2012, A comprehensive overview of computational protein disorder prediction methods, Mol. Biosyst., 8, 114, 10.1039/C1MB05207A
Hsu, 2012, Intrinsic protein disorder and protein–protein interactions, Pac. Symp. Biocomput., 116
Koldewey, 2016, Forces driving chaperone action, Cell, 166, 369, 10.1016/j.cell.2016.05.054
Tompa, 2004, The role of structural disorder in the function of RNA and protein chaperones, FASEB J., 18, 1169, 10.1096/fj.04-1584rev
Haslbeck, 2005, Some like it hot: the structure and function of small heat-shock proteins, Nat. Struct. Mol. Biol., 12, 842, 10.1038/nsmb993
Basha, 2012, Small heat shock proteins and alpha-crystallins: dynamic proteins with flexible functions, Trends Biochem. Sci., 37, 106, 10.1016/j.tibs.2011.11.005
Groitl, 2017, Pseudomonas aeruginosa defense systems against microbicidal oxidants, Mol. Microbiol., 10.1111/mmi.13768