A state-constrained tracking approach for Kalman filter-based ultra-tightly coupled GPS/INS integration

Honglei Qin1, Song Yue1, Cong Li1, Jin Tian1
1School of Electronic and Information Engineering, Beihang University, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Cong L, Li X, Jin T, Yue S, Xue R (2016) An adaptive INS-aided PLL tracking method for GNSS receivers in harsh environments. Sensors 16(2):146

Gao G, Lachapelle G (2008) A novel architecture for ultra-tight HSGPS-INS integration. J Glob Position Syst 7(1):46–61

Gul HU, Kai YD, Khan M (2017) Multi-sensor integrated filtering for highly dynamic system using recursive moving horizon estimation technique. In: 2017 14th international bhurban conference on applied sciences and technology (IBCAST), Islamabad, January, pp 351–356

Gupta N, Hauser R (2007) Kalman filtering with equality and inequality state constraints. Technical report. Oxford University Computing Laboratory, Oxford

Hsieh GC, Hung JC (1996) Phase-locked loop techniques. A survey. IEEE Trans Ind Electron 43(6):609–615

Hu C, Chen W, Chen Y, Liu D (2003) Adaptive Kalman filtering for vehicle navigation. J Glob Position Syst 2(1):42–47

Hurd WJ, Statman JI, Vilnrotter VA (1985) High dynamic GPS receiver validation demonstration. Final report, publication 85-74, Jet Propulsion Laboratory (JPL), Pasadena

Jwo DJ, Yang CF, Chuang CH, Lee TY (2013) Performance enhancement for ultra-tight GPS/INS integration using a fuzzy adaptive strong tracking unscented Kalman filter. Nonlinear Dyn 73(1–2):377–395

Kaplan ED, Hegarty CJ (2006) Understanding GPS: principles and applications, 2nd edn. Artech House, Boston

Keighobadi J, Vosoughi H, Faraji J (2018) Design and implementation of a model predictive observer for AHRS. GPS Solut 22:29

Kim KH, Jee GI, Song JH (2008) Carrier tracking loop using the adaptive two-stage Kalman filter for high dynamic situations. Int J Control Autom Syst 6(6):948–953

Lashley M (2009) Modeling and performance analysis of GPS vector tracking algorithms. Ph.D. dissertation, Auburn University, December 2009

Legrand F, Macabiau C, Issler JL, Lestarquit L, Mehlen C (2000) Improvement of pseudorange measurements accuracy by using fast adaptive bandwidth lock loops. In: Proceedings of the ION GPS 2000, Institute of Navigation, Salt Lake City, USA, September 19–22, pp 2346–2356

Luo Y, Babu R, Wu WQ, He XF (2012) Double-filter model with modified Kalman filter for baseband signal pre-processing with application to ultra-tight GPS/INS integration. GPS Solut 16(4):463–476

Mao WL, Tsao HW, Chang FR (2004) Intelligent GPS receiver for robust carrier phase tracking in kinematic environments. IEE Proc Radar Sonar Navig 151(3):171–180

Niu X, Li B, Ziedan NI, Guo W, Liu J (2017) Analytical and simulation-based comparison between traditional and Kalman filter-based phase-locked loops. GPS Solut 21(1):123–135

NovAtel Inc (2008) OEM4 family user manual, vol 2

O’Driscoll C, Lachapelle G (2009) Comparison of traditional and Kalman filter based tracking architectures. In: Proceedings of European navigation conference 2009, Naples, May 3–6, 2009

O’Driscoll C, Petovello MG, Lachapelle G (2011) Choosing the coherent integration time for Kalman filter-based carrier-phase tracking of GNSS signals. GPS Solut 15(4):345–356

Petovello MG, Sun D, Lachapelle G, Cannon ME (2007a) Performance analysis of an ultra-tightly integrated GPS and reduced IMU system. In: Proceedings of ION GNSS 2007, Institute of Navigation, Fort Worth, TX, USA, September 25–28, pp 602–609

Petovello MG, O’Driscoll C, Lachapelle G (2007b) Ultra-tight GPS/INS for carrier phase positioning in weak-signal environments. In: Proceedings of NATO RTO SET-104 symposium on military capabilities enabled by advances in navigation Sensors, Antalya, Turkey, 1–2 October 1–2

Qin H, Sun X, Cong L (2014) Using fuzzy logic control for the robust carrier tracking loop in a global positioning system/inertial navigation system tightly integrated system. Trans Inst Meas Control 36(3):354–366

Rao CV, Rawlings JB, Lee JH (2001) Constrained linear state estimation—a moving horizon approach. Automatica 37(10):1619–1628

Simon D (2010) Kalman filtering with state constraints: a survey of linear and nonlinear algorithms. IET Control Theory Appl 4(8):1303–1318

Simon D, Chia TL (2002) Kalman filtering with state equality constraints. IEEE Trans Aerosp Electron Syst 38(1):128–136

Simon D, El-Sherief H (1995) Fuzzy logic for digital phase-locked loop filter design. IEEE Trans Fuzzy Syst 3(2):211–218

Sircoulomb V, Israel J, Hoblos G, Chafouk H, Ragot J (2008) State estimation under nonlinear state inequality constraints. A tracking application. In: 16th Mediterranean conference on control and automation, Ajaccio, France, pp 1669–1674

Skone S, Lachapelle G, Yao D (2005) Investigating the impact of ionospheric scintillation using a GPS software receiver. In: Proceedings of ION GNSS 2005, Institute of Navigation, Long Beach, CA, USA, September 13–16, pp 1126–1137

Wang Y, Yang R, Ling KV, Poh EK (2015) Robust vector tracking loop using moving horizon estimation. In: Proceedings of ION 2015 Pacific PNT Meeting, Honolulu, Hawaii, USA, April 20–23, pp 640–648

Won JH, Dötterböck D, Eissfeller B (2010) Performance comparison of different forms of Kalman filter approaches for a vector-based GNSS signal tracking loop. Navigation 57(3):185–199

Yang C, Blasch E (2009) Kalman filtering with nonlinear state constraints. IEEE Trans Aerosp Electron Syst 45(1):70–84

Yang R, Ling KV, Poh EK, Morton Y (2017) Generalized GNSS signal carrier tracking—part II: optimization and implementation. IEEE Trans Aerosp Electron Syst 53(4):1798–1811

Zhang T, Zhang H, Lin T, Yan K, Niu X (2016) Modeling and verifying the impact of time delay on INS-aided GNSS PLLs. GPS Solut 20(4):725–736