A tutorial on optimal control and reinforcement learning methods for quantum technologies

Physics Letters A - Tập 434 - Trang 128054 - 2022
Luigi Giannelli1,2, Pierpaolo Sgroi3, Jonathon Brown3, Gheorghe Sorin Paraoanu4, Mauro Paternostro3, Elisabetta Paladino1,5,2, Giuseppe Falci1,5,2
1Dipartimento di Fisica e Astronomia “Ettore Majorana”, Università di Catania, Via S. Sofia 64, 95123, Catania, Italy
2CNR-IMM, UoS Università, 95123, Catania, Italy
3Centre for Theoretical Atomic, Molecular, and Optical Physics, School of Mathematics and Physics, Queens University, Belfast BT7 1NN, United Kingdom
4QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076 Aalto, Finland
5INFN, Sez. Catania, 95123, Catania, Italy

Tài liệu tham khảo

Acín, 2018, The quantum technologies roadmap: a European community view, New J. Phys., 20, 10.1088/1367-2630/aad1ea Glaser, 2015, Training Schrödinger's cat: quantum optimal control: strategic report on current status, visions and goals for research in Europe, Eur. Phys. J. D, 69, 279, 10.1140/epjd/e2015-60464-1 Boscain, 2021, Introduction to the Pontryagin maximum principle for quantum optimal control, PRX Quantum, 2, 10.1103/PRXQuantum.2.030203 Rembold, 2020, Introduction to quantum optimal control for quantum sensing with nitrogen-vacancy centers in diamond, AVS Quantum Sci., 2, 10.1116/5.0006785 Wilhelm Liberzon, 2012 D'Alessandro, 2021 Bressan, 2007, Introduction to the Mathematical Theory of Control: With 102 Figures and 107 Exercises, vol. 2 Berry, 2009, Transitionless quantum driving, J. Phys. A, Math. Theor., 42, 10.1088/1751-8113/42/36/365303 Guéry-Odelin, 2019, Shortcuts to adiabaticity: concepts, methods, and applications, Rev. Mod. Phys., 91, 10.1103/RevModPhys.91.045001 Dunjko, 2018, Machine learning & artificial intelligence in the quantum domain: a review of recent progress, Rep. Prog. Phys., 81, 10.1088/1361-6633/aab406 Carleo, 2019, Machine learning and the physical sciences, Rev. Mod. Phys., 91, 10.1103/RevModPhys.91.045002 Mehta, 2019, A high-bias, low-variance introduction to machine learning for physicists, Phys. Rep., 810, 1, 10.1016/j.physrep.2019.03.001 Marquardt, 2021, Machine Learning and Quantum Devices, 029 Alchieri, 2021, An introduction to quantum machine learning: from quantum logic to quantum deep learning, Quantum Mach. Intell., 3, 28, 10.1007/s42484-021-00056-8 Carleo, 2017, Solving the quantum many-body problem with artificial neural networks, Science, 355, 602, 10.1126/science.aag2302 Youssry, 2020, Characterization and control of open quantum systems beyond quantum noise spectroscopy, npj Quantum Inf., 6, 95, 10.1038/s41534-020-00332-8 Sgroi, 2021, Reinforcement learning approach to nonequilibrium quantum thermodynamics, Phys. Rev. Lett., 126, 10.1103/PhysRevLett.126.020601 Beer, 2020, Training deep quantum neural networks, Nat. Commun., 11, 808, 10.1038/s41467-020-14454-2 Romero, 2017, Quantum autoencoders for efficient compression of quantum data, Quantum Sci. Technol., 2, 10.1088/2058-9565/aa8072 Saggio, 2021, Experimental quantum speed-up in reinforcement learning agents, Nature, 591, 229, 10.1038/s41586-021-03242-7 Brown, 2021, Reinforcement learning-enhanced protocols for coherent population-transfer in three-level quantum systems, New J. Phys., 23, 10.1088/1367-2630/ac2393 Porotti, 2019, Coherent transport of quantum states by deep reinforcement learning, Commun. Phys., 2, 1, 10.1038/s42005-019-0169-x Paparelle, 2020, Digitally stimulated Raman passage by deep reinforcement learning, Phys. Lett. A, 384, 10.1016/j.physleta.2020.126266 Costa, 2021, Benchmarking machine learning algorithms for adaptive quantum phase estimation with noisy intermediate-scale quantum sensors, EPJ Quantum Technol., 8 Hentschel, 2010, Machine learning for precise quantum measurement, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.063603 Hentschel, 2011, Efficient algorithm for optimizing adaptive quantum metrology processes, Phys. Rev. Lett., 107, 10.1103/PhysRevLett.107.233601 Kuklinski, 1989, Adiabatic population transfer in a three-level system driven by delayed laser pulses, Phys. Rev. A, 40, 6741, 10.1103/PhysRevA.40.6741 Bergmann, 1998, Coherent population transfer among quantum states of atoms and molecules, Rev. Mod. Phys., 70, 1003, 10.1103/RevModPhys.70.1003 Vitanov, 2017, Stimulated Raman adiabatic passage in physics, chemistry, and beyond, Rev. Mod. Phys., 89, 10.1103/RevModPhys.89.015006 Boscain, 2002, Optimal control in laser-induced population transfer for two- and three-level quantum systems, J. Math. Phys., 43, 2107, 10.1063/1.1465516 Yuan, 2012, Controllability on relaxation-free subspaces: on the relationship between adiabatic population transfer and optimal control, Phys. Rev. A, 85, 10.1103/PhysRevA.85.033417 Goerz, 2019, Krotov: a Python implementation of Krotov's method for quantum optimal control, SciPost Phys., 7, 10.21468/SciPostPhys.7.6.080 Rabi, 1954, Use of rotating coordinates in magnetic resonance problems, Rev. Mod. Phys., 26, 167, 10.1103/RevModPhys.26.167 Shore, 1990 Carmichael, 1999 Born, 1928, Beweis des adiabatensatzes, Z. Phys., 51, 165, 10.1007/BF01343193 Messiah, 1961 Arimondo, 1976, Nonabsorbing atomic coherences by coherent two-photon transitions in a three-level optical pumping, Lett. Nuovo Cimento (1971–1985), 17, 333, 10.1007/BF02746514 Fleischhauer, 1996, Propagation of laser pulses and coherent population transfer in dissipative three-level systems: an adiabatic dressed-state picture, Phys. Rev. A, 54, 794, 10.1103/PhysRevA.54.794 Giannelli, 2014, Three-level superadiabatic quantum driving, Phys. Rev. A, 89, 10.1103/PhysRevA.89.033419 Petiziol, 2020, Optimized three-level quantum transfers based on frequency-modulated optical excitations, Sci. Rep., 10, 2185, 10.1038/s41598-020-59046-8 Di Stefano, 2015, Population transfer in a Lambda system induced by detunings, Phys. Rev. B, 91, 10.1103/PhysRevB.91.224506 Di Stefano, 2016, Coherent manipulation of noise-protected superconducting artificial atoms in the Lambda scheme, Phys. Rev. A, 93, 10.1103/PhysRevA.93.051801 Falci, 2017, Advances in quantum control of three-level superconducting circuit architectures, Fortschr. Phys., 65 Falci, 2019, Ultrastrong coupling probed by coherent population transfer, Sci. Rep., 9, 9249, 10.1038/s41598-019-45187-y Ridolfo, 2021, Probing ultrastrong light–matter coupling in open quantum systems, Eur. Phys. J. Spec. Top., 230, 941, 10.1140/epjs/s11734-021-00070-8 Koch, 2016, Controlling open quantum systems: tools, achievements, and limitations, J. Phys. Condens. Matter, 28, 10.1088/0953-8984/28/21/213001 Watts, 2015, Optimizing for an arbitrary perfect entangler. I. Functionals, Phys. Rev. A, 91, 10.1103/PhysRevA.91.062306 Goerz, 2015, Optimizing for an arbitrary perfect entangler. II. Application, Phys. Rev. A, 91, 10.1103/PhysRevA.91.062307 Müller, 2011, Optimizing entangling quantum gates for physical systems, Phys. Rev. A, 84, 10.1103/PhysRevA.84.042315 Basilewitsch, 2020, Optimally controlled quantum discrimination and estimation, Phys. Rev. Res., 2, 10.1103/PhysRevResearch.2.033396 Khaneja, 2005, Optimal control of coupled spin dynamics: design of NMR pulse sequences by gradient ascent algorithms, J. Magn. Res., 172, 296, 10.1016/j.jmr.2004.11.004 Palao, 2003, Optimal control theory for unitary transformations, Phys. Rev. A, 68, 10.1103/PhysRevA.68.062308 Montangero, 2007, Robust optimal quantum gates for Josephson charge qubits, Phys. Rev. Lett., 99, 10.1103/PhysRevLett.99.170501 Said, 2009, Robust control of entanglement in a nitrogen-vacancy center coupled to a C 13 nuclear spin in diamond, Phys. Rev. A, 80, 10.1103/PhysRevA.80.032303 Goerz, 2014, Optimal control theory for a unitary operation under dissipative evolution, New J. Phys., 16, 10.1088/1367-2630/16/5/055012 Palao, 2008, Protecting coherence in optimal control theory: state-dependent constraint approach, Phys. Rev. A, 77, 10.1103/PhysRevA.77.063412 Gorini, 1976, Completely positive dynamical semigroups of N-level systems, J. Math. Phys., 17, 821, 10.1063/1.522979 Lindblad, 1976, On the generators of quantum dynamical semigroups, Commun. Math. Phys., 48, 119, 10.1007/BF01608499 Rabitz, 2004, Quantum optimally controlled transition landscapes, Science, 303, 1998, 10.1126/science.1093649 Goerz, 2015, Hybrid optimization schemes for quantum control, EPJ Quantum Technol., 2, 10.1140/epjqt/s40507-015-0034-0 Goerz, 2017, Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf., 3, 1, 10.1038/s41534-017-0036-0 Basilewitsch Lucarelli, 2018, Quantum optimal control via gradient ascent in function space and the time-bandwidth quantum speed limit, Phys. Rev. A, 97, 10.1103/PhysRevA.97.062346 Krotov, 1993, Global methods in optimal control theory, 74 Konnov, 1999, On global methods for the successive improvement of control processes, Autom. Remote Control, 60, 1427 Sklarz, 2002, Loading a Bose-Einstein condensate onto an optical lattice: an application of optimal control theory to the nonlinear Schrödinger equation, Phys. Rev. A, 66, 10.1103/PhysRevA.66.053619 Reich, 2012, Monotonically convergent optimization in quantum control using Krotov's method, J. Chem. Phys., 136, 10.1063/1.3691827 Machnes, 2018, Tunable, flexible, and efficient optimization of control pulses for practical qubits, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.150401 Doria, 2011, Optimal control technique for many-body quantum dynamics, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.190501 Caneva, 2011, Chopped random-basis quantum optimization, Phys. Rev. A, 84, 10.1103/PhysRevA.84.022326 Müller Rach, 2015, Dressing the chopped-random-basis optimization: a bandwidth-limited access to the trap-free landscape, Phys. Rev. A, 92, 10.1103/PhysRevA.92.062343 Johansson, 2013, QuTiP 2: a Python framework for the dynamics of open quantum systems, Comput. Phys. Commun., 184, 1234, 10.1016/j.cpc.2012.11.019 Powell, 1964, An efficient method for finding the minimum of a function of several variables without calculating derivatives, Comput. J., 7, 155, 10.1093/comjnl/7.2.155 Nelder, 1965, A simplex method for function minimization, Comput. J., 7, 308, 10.1093/comjnl/7.4.308 Byrd, 1995, A limited memory algorithm for bound constrained optimization, SIAM J. Sci. Comput., 16, 1190, 10.1137/0916069 Virtanen, 2020, SciPy 1.0: fundamental algorithms for scientific computing in Python, Nat. Methods, 17, 261, 10.1038/s41592-019-0686-2 Kumar, 2016, Stimulated Raman adiabatic passage in a three-level superconducting circuit, Nat. Commun., 7, 10.1038/ncomms10628 Vepsäläinen, 2019, Superadiabatic population transfer in a three-level superconducting circuit, Sci. Adv., 5, 10.1126/sciadv.aau5999 Vepsäläinen, 2020, Simulating spin chains using a superconducting circuit: gauge invariance, superadiabatic transport, and broken time-reversal symmetry, Adv. Quantum Tech., 3, 10.1002/qute.201900121 Hornik, 1989, Multilayer feedforward networks are universal approximators, Neural Netw., 2, 359, 10.1016/0893-6080(89)90020-8 Lillicrap Mnih Mnih, 2015, Human-level control through deep reinforcement learning, Nature, 518, 529, 10.1038/nature14236 Silver, 2017, Mastering the game of Go without human knowledge, Nature, 550, 354, 10.1038/nature24270 Sivak Haug, 2020, Classifying global state preparation via deep reinforcement learning, Mach. Learn. Sci. Tech., 2, 10.1088/2632-2153/abc81f Porotti Kuo Niu, 2019, Universal quantum control through deep reinforcement learning, npj Quantum Inf., 5, 1, 10.1038/s41534-019-0141-3 An, 2021, Quantum optimal control of multilevel dissipative quantum systems with reinforcement learning, Phys. Rev. A, 103, 10.1103/PhysRevA.103.012404 Borah, 2021, Measurement-based feedback quantum control with deep reinforcement learning for a double-well nonlinear potential, Phys. Rev. Lett., 127, 10.1103/PhysRevLett.127.190403 Fallani Mavadia, 2017, Prediction and real-time compensation of qubit decoherence via machine learning, Nat. Commun., 8, 10.1038/ncomms14106 Fösel, 2018, Reinforcement learning with neural networks for quantum feedback, Phys. Rev. X, 8 Moro, 2021, Quantum compiling by deep reinforcement learning, Commun. Phys., 4, 1, 10.1038/s42005-021-00684-3 Sutton, 2018 Guadarrama, 2018 Kingma Zhang, 2019, When does reinforcement learning stand out in quantum control? A comparative study on state preparation, npj Quantum Inf., 5, 85, 10.1038/s41534-019-0201-8