The role of wild type RAS isoforms in cancer
Tài liệu tham khảo
Wennerberg, 2005, The Ras superfamily at a glance, J. Cell Sci., 118, 843, 10.1242/jcs.01660
Cox, 2010, Ras history: the saga continues, Small GTPases, 1, 2, 10.4161/sgtp.1.1.12178
Karnoub, 2008, Ras oncogenes: split personalities, Nat. Rev. Mol. Cell Biol., 9, 517, 10.1038/nrm2438
Cox, 2014, Drugging the undruggable RAS: mission possible?, Nat. Rev. Drug Discov., 13, 828, 10.1038/nrd4389
Pylayeva-Gupta, 2011, RAS oncogenes: weaving a tumorigenic web, Nat. Rev. Cancer, 11, 761, 10.1038/nrc3106
Vigil, 2010, Ras superfamily GEFs and GAPs: validated and tractable targets for cancer therapy?, Nat. Rev. Cancer, 10, 842, 10.1038/nrc2960
Maertens, 2014, An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer, Adv. Biol. Regul., 55, 1, 10.1016/j.jbior.2014.04.002
Tsai, 2015, K-Ras4A splice variant is widely expressed in cancer and uses a hybrid membrane-targeting motif, Proc. Natl. Acad. Sci. U. S. A., 112, 779, 10.1073/pnas.1412811112
Cox, 2015, Targeting RAS membrane association: back to the future for anti-RAS drug discovery?, Clin. Cancer Res., 21, 1819, 10.1158/1078-0432.CCR-14-3214
Prior, 2012, Ras trafficking, localization and compartmentalized signalling, Semin. Cell Dev. Biol., 23, 145, 10.1016/j.semcdb.2011.09.002
Omerovic, 2009, Compartmentalized signalling: ras proteins and signalling nanoclusters, FEBS J., 276, 1817, 10.1111/j.1742-4658.2009.06928.x
Plowman, 2005, membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton, Proc. Natl. Acad. Sci. U. S. A., 102, 15500, 10.1073/pnas.0504114102
Cox, 2003, The dark side of Ras: regulation of apoptosis, Oncogene, 22, 8999, 10.1038/sj.onc.1207111
Hamilton, 1998, Ha-ras and N-ras regulate MAPK activity by distinct mechanisms in vivo, Oncogene, 16, 1417, 10.1038/sj.onc.1201653
Voice, 1999, Four human ras homologs differ in their abilities to activate Raf-1, induce transformation, and stimulate cell motility, J. Biol. Chem., 274, 17164, 10.1074/jbc.274.24.17164
Yan, 1998, Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase, J. Biol. Chem., 273, 24052, 10.1074/jbc.273.37.24052
Castellano, 2011, Functional specificity of ras isoforms: so similar but so different, Genes Cancer, 2, 216, 10.1177/1947601911408081
Fotiadou, 2007, Wild-type NRas and KRas perform distinct functions during transformation, Mol. Cell. Biol., 27, 6742, 10.1128/MCB.00234-07
Haigis, 2008, Differential effects of oncogenic K-Ras and N-Ras on proliferation, differentiation and tumor progression in the colon, Nat. Genet., 40, 600, 10.1038/ng.115
Newlaczyl, 2014, Decoding RAS isoform and codon-specific signalling, Biochem. Soc. Trans., 42, 742, 10.1042/BST20140057
Parikh, 2007, Oncogenic NRAS, KRAS, and HRAS exhibit different leukemogenic potentials in mice, Cancer Res., 67, 7139, 10.1158/0008-5472.CAN-07-0778
Quinlan, 2009, Isoform-specific ras functions in development and cancer, Future Oncol., 5, 105, 10.2217/14796694.5.1.105
Whitwam, 2007, Differential oncogenic potential of activated RAS isoforms in melanocytes, Oncogene, 26, 4563, 10.1038/sj.onc.1210239
Johnson, 1997, K-ras is an essential gene in the mouse with partial functional overlap with N-ras, Genes. Dev., 11, 2468, 10.1101/gad.11.19.2468
Koera, 1997, K-ras is essential for the development of the mouse embryo, Oncogene, 15, 1151, 10.1038/sj.onc.1201284
Potenza, 2005, Replacement of K-Ras with H-Ras supports normal embryonic development despite inducing cardiovascular pathology in adult mice, EMBO Rep., 6, 432, 10.1038/sj.embor.7400397
Umanoff, 1995, The murine N-ras gene is not essential for growth and development, Proc. Natl. Acad. Sci. U. S. A., 92, 1709, 10.1073/pnas.92.5.1709
Perez de Castro, 2003, Mice deficient for N-ras: impaired antiviral immune response and T-cell function, Cancer Res., 63, 1615
Esteban, 2001, Targeted genomic disruption of H-ras and N-ras, individually or in combination, reveals the dispensability of both loci for mouse growth and development, Mol. Cell. Biol., 21, 1444, 10.1128/MCB.21.5.1444-1452.2001
Ise, 2000, Targeted deletion of the H-ras gene decreases tumor formation in mouse skin carcinogenesis, Oncogene, 19, 2951, 10.1038/sj.onc.1203600
Hobbs, 2016, RAS isoforms and mutations in cancer at a glance, J. Cell Sci., 129, 1287, 10.1242/jcs.182873
Westcott, 2015, The mutational landscapes of genetic and chemical models of Kras-driven lung cancer, Nature, 517, 489, 10.1038/nature13898
Pershing, 2015, Rare codons capacitate Kras-driven de novo tumorigenesis, J. Clin. Invest., 125, 222, 10.1172/JCI77627
Courtois-Cox, 2006, A negative feedback signaling network underlies oncogene-induced senescence, Cancer Cell, 10, 459, 10.1016/j.ccr.2006.10.003
Dimauro, 2010, Ras-induced senescence and its physiological relevance in cancer, Curr. Cancer Drug Targets, 10, 869, 10.2174/156800910793357998
Guerra, 2003, Tumor induction by an endogenous K-ras oncogene is highly dependent on cellular context, Cancer Cell, 4, 111, 10.1016/S1535-6108(03)00191-0
Spandidos, 2002, Normal ras genes: their onco-suppressor and pro-apoptotic functions (review), Int. J. Oncol., 21, 237
To, 2006, A functional switch from lung cancer resistance to susceptibility at the Pas1 locus in Kras2LA2 mice, Nat. Genet., 38, 926, 10.1038/ng1836
Lampson, 2013, Rare codons regulate KRas oncogenesis, Curr. Biol.: CB, 23, 70, 10.1016/j.cub.2012.11.031
Cerami, 2012, The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data, Cancer Discov., 2, 401, 10.1158/2159-8290.CD-12-0095
Gao, 2013, Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal, Sci. Signal., 6, pl1, 10.1126/scisignal.2004088
Spandidos, 1988, The normal human H-ras1 gene can act as an onco-suppressor, Br. J. Cancer, 9, 67
Spandidos, 1990, Expression of the normal H-ras1 gene can suppress the transformed and tumorigenic phenotypes induced by mutant ras genes, Anticancer Res., 10, 1543
Bremner, 1990, Genetic changes in skin tumor progression: correlation between presence of a mutant ras gene and loss of heterozygosity on mouse chromosome 7, Cell, 61, 407, 10.1016/0092-8674(90)90523-H
Bremner, 1994, Induction of different genetic changes by different classes of chemical carcinogens during progression of mouse skin tumors, Mol. Carcinog., 11, 90, 10.1002/mc.2940110206
Guerrero, 1985, Loss of the normal N-ras allele in a mouse thymic lymphoma induced by a chemical carcinogen, Proc. Natl. Acad. Sci. U. S. A., 82, 7810, 10.1073/pnas.82.23.7810
Zhang, 2001, Wildtype Kras2 can inhibit lung carcinogenesis in mice, Nat. Genet., 29, 25, 10.1038/ng721
Diaz, 2002, The N-ras proto-oncogene can suppress the malignant phenotype in the presence or absence of its oncogene, Cancer Res., 62, 4514
To, 2013, Interactions between wild-type and mutant Ras genes in lung and skin carcinogenesis, Oncogene, 32, 4028, 10.1038/onc.2012.404
To, 2008, Kras regulatory elements and exon 4A determine mutation specificity in lung cancer, Nat. Genet., 40, 1240, 10.1038/ng.211
Staffas, 2015, Wild-type KRAS inhibits oncogenic KRAS-induced T-ALL in mice, Leukemia, 29, 1032, 10.1038/leu.2014.315
Kong, 2016, Loss of wild-type Kras promotes activation of all Ras isoforms in oncogenic Kras-induced leukemogenesis, Leukemia, 30, 1542, 10.1038/leu.2016.40
Xu, 2013, Dominant role of oncogene dosage and absence of tumor suppressor activity in Nras-driven hematopoietic transformation, Cancer Discov., 3, 993, 10.1158/2159-8290.CD-13-0096
Diaz, 2004, Complex effects of Ras proto-oncogenes in tumorigenesis, Carcinogenesis, 25, 535, 10.1093/carcin/bgh026
Li, 2003, LOH of chromosome 12p correlates with Kras2 mutation in non-small cell lung cancer, Oncogene, 22, 1243, 10.1038/sj.onc.1206192
Qiu, 2011, Disruption of p16 and activation of Kras in pancreas increase ductal adenocarcinoma formation and metastasis in vivo, Oncotarget, 2, 862, 10.18632/oncotarget.357
Wan, 2006, Loss of heterozygosity of Kras2 gene on 12p 12–13 in Chinese colon carcinoma patients, World J. Gastroenterol., 12, 1033, 10.3748/wjg.v12.i7.1037
Soh, 2009, Oncogene mutations, copy number gains and mutant allele specific imbalance (MASI) frequently occur together in tumor cells, PLoS One, 4, e7464, 10.1371/journal.pone.0007464
Logsdon, 2016, The significance of ras activity in pancreatic cancer initiation, Int. J. Biol. Sci., 12, 338, 10.7150/ijbs.15020
Jones, 2008, Core signaling pathways in human pancreatic cancers revealed by global genomic analyses, Science, 321, 1801, 10.1126/science.1164368
Matallanas, 2011, Mutant K-Ras activation of the proapoptotic MST2 pathway is antagonized by wild-type K-Ras, Mol. Cell, 44, 893, 10.1016/j.molcel.2011.10.016
Barretina, 2012, The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity, Nature, 483, 603, 10.1038/nature11003
Cengel, 2007, Oncogenic K-Ras signals through epidermal growth factor receptor and wild-type H-Ras to promote radiation survival in pancreatic and colorectal carcinoma cells, Neoplasia, 9, 341, 10.1593/neo.06823
Ikonomou, 2012, Interplay between oncogenic K-Ras and wild-type H-Ras in Caco2 cell transformation, J. Proteom., 75, 5356, 10.1016/j.jprot.2012.06.038
Keller, 2007, Oncogenic K-RAS subverts the antiapoptotic role of N-RAS and alters modulation of the N-RAS:gelsolin complex, Oncogene, 26, 3051, 10.1038/sj.onc.1210103
Wolfman, 2000, Endogenous c-N-Ras provides a steady-state anti-apoptotic signal, J. Biol. Chem., 275, 19315, 10.1074/jbc.M000250200
Lim, 2008, Tumour maintenance is mediated by eNOS, Nature, 452, 646, 10.1038/nature06778
Jeng, 2012, Sos-mediated cross-activation of wild-type Ras by oncogenic Ras is essential for tumorigenesis, Nat. Commun., 3, 1168, 10.1038/ncomms2173
Grabocka, 2014, Wild-type H- and N-Ras promote mutant K-Ras-driven tumorigenesis by modulating the DNA damage response, Cancer Cell, 25, 243, 10.1016/j.ccr.2014.01.005
Young, 2013, Oncogenic and wild-type Ras play divergent roles in the regulation of mitogen-activated protein kinase signaling, Cancer Discov., 3, 112, 10.1158/2159-8290.CD-12-0231
Maruyama, 2001, Overexpression of human H-ras transgene is responsible for tumors induced by chemical carcinogens in mice, Oncol. Rep., 8, 233
Tsunematsu, 1994, Hepatic tumors induced by carbon tetrachloride in transgenic mice carrying a human c-H-ras proto-oncogene without mutations, Int. J. Cancer, 59, 554, 10.1002/ijc.2910590420
Cancer Genome Atlas Research Network, 2015, The molecular taxonomy of primary prostate cancer, Cell, 163, 1011, 10.1016/j.cell.2015.10.025
Cancer Genome Atlas Research Network, 2011, Integrated genomic analyses of ovarian carcinoma, Nature, 474, 609, 10.1038/nature10166
Min, 2010, An oncogene-tumor suppressor cascade drives metastatic prostate cancer by coordinately activating Ras and nuclear factor-kappaB, Nat. Med., 16, 286, 10.1038/nm.2100
Barbieri, 2015, Genomic rearrangements in prostate cancer, Curr. Opin. Urol., 25, 71, 10.1097/MOU.0000000000000129
Wang, 2011, Characterization of KRAS rearrangements in metastatic prostate cancer, Cancer discovery, 1, 35, 10.1158/2159-8274.CD-10-0022
Calvisi, 2011, Inactivation of Ras GTPase-activating proteins promotes unrestrained activity of wild-type Ras in human liver cancer, J. Hepatol., 54, 311, 10.1016/j.jhep.2010.06.036
Kolfschoten, 2005, A genetic screen identifies PITX1 as a suppressor of RAS activity and tumorigenicity, Cell, 121, 849, 10.1016/j.cell.2005.04.017
Cancer Genome Atlas Network, 2015, Genomic Classification of Cutaneous MelanomaGenomic classification of cutaneous melanoma, Cell, 161, 1681, 10.1016/j.cell.2015.05.044
Verhaak, 2010, Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1, Cancer Cell, 17, 98, 10.1016/j.ccr.2009.12.020
Brennan, 2013, The somatic genomic landscape of glioblastoma, Cell, 155, 462, 10.1016/j.cell.2013.09.034
2014, Comprehensive molecular profiling of lung adenocarcinoma, Nature, 511, 543, 10.1038/nature13385
2012, Comprehensive genomic characterization of squamous cell lung cancers, Nature, 489, 519, 10.1038/nature11404
Maertens, 2013, Elucidating distinct roles for NF1 in melanomagenesis, Cancer Discov., 3, 338, 10.1158/2159-8290.CD-12-0313
Nissan, 2014, Loss of NF1 in cutaneous melanoma is associated with RAS activation and MEK dependence, Cancer Res., 74, 2340, 10.1158/0008-5472.CAN-13-2625
Whittaker, 2013, A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition, Cancer Discov., 3, 350, 10.1158/2159-8290.CD-12-0470
Li, 2016, Smurf1 regulation of DAB2IP controls cell proliferation and migration, Oncotarget
Kidger, 2016, The regulation of oncogenic Ras/ERK signalling by dual-specificity mitogen activated protein kinase phosphatases (MKPs), Semin. Cell Dev. Biol., 50, 125, 10.1016/j.semcdb.2016.01.009
Zhang, 2010, Dual specificity phosphatase 6 (DUSP6) is an ETS-regulated negative feedback mediator of oncogenic ERK signaling in lung cancer cells, Carcinogenesis, 31, 577, 10.1093/carcin/bgq020
Rushworth, 2014, Dual-specificity phosphatase 5 regulates nuclear ERK activity and suppresses skin cancer by inhibiting mutant Harvey-Ras (HRasQ61L)-driven SerpinB2 expression, Proc. Natl. Acad. Sci. U. S. A., 111, 18267, 10.1073/pnas.1420159112
Hanafusa, 2002, Sprouty1 and Sprouty2 provide a control mechanism for the Ras/MAPK signalling pathway, Nat. Cell Biol., 4, 850, 10.1038/ncb867
Kim, 2004, Modulation of signalling by Sprouty: a developing story, Nat. Rev. Mol. Cell Biol., 5, 441, 10.1038/nrm1400
Schutzman, 2012, Sprouty genes function in suppression of prostate tumorigenesis, Proc. Natl. Acad. Sci. U. S. A., 109, 20023, 10.1073/pnas.1217204109
Zhao, 2015, Cooperative loss of RAS feedback regulation drives myeloid leukemogenesis, Nat. Genet., 47, 539, 10.1038/ng.3251
Swanson, 2008, SOS1 mutations are rare in human malignancies: implications for Noonan Syndrome patients, Genes Chromosomes Cancer, 47, 253, 10.1002/gcc.20527
Ksionda, 2013, RasGRP Ras guanine nucleotide exchange factors in cancer, Front. Biol., 8, 508, 10.1007/s11515-013-1276-9
Oki, 2012, Aberrant expression of RasGRP1 cooperates with gain-of-function NOTCH1 mutations in T-cell leukemogenesis, Leukemia, 26, 1038, 10.1038/leu.2011.328