Impact of adequate empirical combination therapy on mortality from bacteremic Pseudomonas aeruginosapneumonia

BMC Infectious Diseases - Tập 12 - Trang 1-6 - 2012
So-Youn Park1, Hyun Jung Park1, Song Mi Moon1, Ki-Ho Park1, Yong Pil Chong1, Mi-Na Kim2, Sung-Han Kim1, Sang-Oh Lee1, Yang Soo Kim1, Jun Hee Woo1, Sang-Ho Choi1
1Departments of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
2Departments of Laboratory Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea

Tóm tắt

Pseudomonas aeruginosa has gained an increasing amount of attention in the treatment of patients with pneumonia. However, the benefit of empirical combination therapy for pneumonia remains unclear. We evaluated the effects of adequate empirical combination therapy and multidrug-resistance in bacteremic Pseudomonas pneumonia on the mortality. A retrospective cohort study was performed at the 2,700-bed tertiary care university hospital. We reviewed the medical records of patients with bacteremic pneumonia between January 1997 and February 2011. Patients who received either inappropriate or appropriate empirical therapy were compared by using marginal structural model. Furthermore, we investigated the direct impact of combination therapy on clinical outcomes in patients with monomicrobial bacteremic pneumonia. Among 100 consecutive patients with bacteremic Pseudomonas pneumonia, 65 patients were classified in the adequate empirical therapy group, 32 of whom received monotherapy and 33 combination therapy. In the marginal structural model, only inadequate therapy was significantly associated with 28-day mortality (p = 0.02), and multidrug-resistance was not a significant risk factor. To examine further the direct impact of combination therapy, we performed a subgroup analysis of the 65 patients who received adequate therapy. Multivariate logistic regression analysis identified absence of septic shock at the time of bacteremia (OR, 0.07; 95% CI, 0.01-0.49; p = 0.008), and adequate combination therapy (OR, 0.05; 95% CI, 0.01-0.34; p = 0.002) as variables independently associated with decreased all-cause 28-day mortality. Our study suggests that adequate empirical combination therapy can decrease mortality in patients with bacteremic Pseudomonas pneumonia.

Tài liệu tham khảo

Joo EJ, Kang CI, Ha YE, Park SY, Kang SJ, Wi YM, Lee NY, Chung DR, Peck KR, Song JH: Impact of inappropriate empiric antimicrobial therapy on outcome in Pseudomonas aeruginosa bacteraemia: a stratified analysis according to sites of infection. Infection. 2011, 39 (4): 309-318. 10.1007/s15010-011-0124-6. Fujitani S, Sun HY, Yu VL, Weingarten JA: Pneumonia due to Pseudomonas aeruginosa: part I: epidemiology, clinical diagnosis, and source. Chest. 2011, 139 (4): 909-919. 10.1378/chest.10-0166. National Nosocomial Infections Surveillance System: National Nosocomial Infections Surveillance (NNIS) System Report, data summary from January 1992 through June 2004, issued October 2004. Am J Infect Control. 2004, 32 (8): 470-485. 10.1016/j.ajic.2004.10.001. Sun HY, Fujitani S, Quintiliani R, Yu VL: Pneumonia due to Pseudomonas aeruginosa: part II: antimicrobial resistance, pharmacodynamic concepts, and antibiotic therapy. Chest. 2011, 139 (5): 1172-1185. 10.1378/chest.10-0167. El Solh AA, Alhajhusain A: Update on the treatment of Pseudomonas aeruginosa pneumonia. J Antimicrob Chemother. 2009, 64 (2): 229-238. 10.1093/jac/dkp201. Anderson ET, Young LS, Hewitt WL: Antimicrobial synergism in the therapy of gram-negative rod bacteremia. Chemotherapy. 1978, 24 (1): 45-54. 10.1159/000237759. Paul M, Benuri-Silbiger I, Soares-Weiser K, Leibovici L: Beta lactam monotherapy versus beta lactam-aminoglycoside combination therapy for sepsis in immunocompetent patients: systematic review and meta-analysis of randomized trials. BMJ. 2004, 328 (7441): 668-681. 10.1136/bmj.38028.520995.63. Safdar N, Handelsman J, Maki DG: Does combination antimicrobial therapy reduce mortality in Gram-negative bacteraemia? A meta-analysis. Lancet Infect Dis. 2004, 4 (8): 519-527. 10.1016/S1473-3099(04)01108-9. Traugott KA, Echevarria K, Maxwell P, Green K, Lewis JS: Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy. 2011, 31 (6): 598-608. 10.1592/phco.31.6.598. Heyland DK, Dodek P, Muscedere J, Day A, Cook D, Canadian Critical Care Trials Group: Randomized trial of combination versus monotherapy for the empiric treatment of suspected ventilator-associated pneumonia. Crit Care Med. 2008, 36 (3): 737-744. 10.1097/01.CCM.0B013E31816203D6. Chamot E, Boffi El Amari E, Rohner P, Van Delden C: Effectiveness of combination antimicrobial therapy for Pseudomonas aeruginosa bacteremia. Antimicrob Agents Chemother. 2003, 47 (9): 2756-2764. 10.1128/AAC.47.9.2756-2764.2003. Carratalà J, Mykietiuk A, Fernández-Sabé N, Suárez C, Dorca J, Verdaguer R, Manresa F, Gudiol F: Health care-associated pneumonia requiring hospital admission: epidemiology, antibiotic therapy, and clinical outcomes. Arch Intern Med. 2007, 167 (13): 1393-1399. 10.1001/archinte.167.13.1393. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM, Musher DM, Niederman MS, Torres A, Whitney CG, Infectious Diseases Society of America; American Thoracic Society: Infectious Diseases Society of America/American Thoracic Society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis. 2007, 44: S27-S72. 10.1086/511159. Kollef MH, Shorr A, Tabak YP, Gupta V, Liu LZ, Johannes RS: Epidemiology and outcomes of health-care-associated pneumonia: results from a large US database of culture-positive pneumonia. Chest. 2005, 128 (6): 3854-3862. 10.1378/chest.128.6.3854. American Thoracic Society; Infectious Diseases Society of America: Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005, 171 (4): 388-416. Garnacho-Montero J, Sa-Borges M, Sole-Violan J, Barcenilla F, Escoresca-Ortega A, Ochoa M, Cayuela A, Rello J: Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med. 2007, 35 (8): 1888-1895. 10.1097/01.CCM.0000275389.31974.22. Clinical and Laboratory Standards Institute: Performance standards for antimicrobial testing: seventeenth informational supplement. CLSI document M100-S17. 2007, Clinical and Laboratory Standards Institute, Wayne, PA Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME, Giske CG, Harbarth S, Hindler JF, Kahlmeter G, Olsson-Liljequist B, Paterson DL, Rice LB, Stelling J, Struelens MJ, Vatopoulos A, Weber JT, Monnet DL: Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 2012, 18 (3): 268-281. 10.1111/j.1469-0691.2011.03570.x. Robins JM, Hernán MA, Brumback B: Marginal structural models and causal inference in epidemiology. Epidemiology. 2000, 11 (5): 550-560. 10.1097/00001648-200009000-00011. Suarez D, Haro JM, Novick D, Ochoa S: Marginal structural models might overcome confounding when analyzing multiple treatment effects in observational studies. J Clin Epidemiol. 2008, 61 (6): 525-530. 10.1016/j.jclinepi.2007.11.007. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2334/12/308/prepub