A New Leaf Venation Detection Technique for Plant Species Classification

Arabian Journal for Science and Engineering - Tập 44 - Trang 3315-3327 - 2018
Hoshang Kolivand1, Bong Mei Fern2, Tanzila Saba3, Mohd Shafry Mohd Rahim4, Amjad Rehman5
1Department of Computer Science, Liverpool John Moores University, Liverpool, UK
2Department of Computer Science, Universiti Tunku Abdul Rahman, Kajang, Malaysia
3College of Computer and Information Sciences, Prince Sultan University, Riyadh, Saudi Arabia
4Media and Games Innovation Centre of Excellence (MaGIC-X) UTM-IRDA Digital Media Centre, Institute of Human Centred, University Industry Research Laboratory (UIRL), Universiti Teknologi Malaysia (UTM), Skudai, Malaysia
5College of Computer and Information Systems, Al Yamamah University, Riyadh, Saudi Arabia

Tóm tắt

This paper presents a novel approach to classify the leaf shape and to identify plant species using venation detection. The proposed approach consists of five main steps to extract the leaf venation, including canny edge detection, remove leaf boundary, extract curve, and produce hue normalization image and image fusion. Moreover, to localize the edge direction efficiently, the lines that extracted from pre-processing are further divided into smaller segments. Thirty-two leaf images of Malaysian plants are analysed and evaluated with two different datasets, Flavia and Acer. The average accuracy is obtained by 98.6 and 89.83% for Flavia and Acer datasets, respectively. Experimental results show the effectiveness of the proposed approach for shape recognition with high accuracy.

Tài liệu tham khảo

Goëau, H.; Bonnet, P.; Joly, A.; Baki’c, V.; Barbe, J.; Yahiaoui, I.; Selmi, S.; Carré, J.; Barthélémy, D.; Boujemaa, N.; et al.: Pl@ ntnet mobile app. In: Proceedings of the 21st ACM International Conference on Multimedia, pp. 423–424 (2013) Mehmood, Z.; Abbas, F.; Mahmood, T.; et al.: Content-based image retrieval based on visual words fusion versus features fusion of local and global features. Arab. J. Sci. Eng. (2018). https://doi.org/10.1007/s13369-018-3062-0 Jabeen, S.; Mehmood, Z.; Mahmood, T.; Saba, T.; Rehman, A.; Mahmood, M.T.: An effective content-based image retrieval technique for image visuals representation based on the bag-of-visual-words model. PloS one 13(4), e0194526 (2018) Fern, B.M.; Rahim, M.S.M.; Saba, T.; Almazyad, A.S.; Rehman, A.: Stratified classification of plant species based on venation state. Biomed. Res. 28(13), 5660–5663 (2017) Bong, M.F.; Sulong, G.; Kumoi, R.; Rahim, M.S.M.: Classify the plant species based on lobes, sinuses and margin. Jurnal Teknologi. 75(2), 27–31 (2015) Kolivand, H.; Fern, B.M.; Rahim, M.S.M.; Sulong, G.; Baker, T.; Tully, D.: An expert botanical feature extraction technique based on phenetic features for identifying plant species. PloS one 13(2), e0191447 (2018) Neamah, K.; Mohamad, D.; Saba, T.; Rehman, A.: Discriminative features mining for offline handwritten signature verification. 3D Res. (2014). https://doi.org/10.1007/s13319-013-0002-3 Mzoughi, O.; Yahiaoui, I.; Boujemaa, N.; Zagrouba, E.: Advanced tree species identification using multiple leaf parts image queries. In: 20th IEEE International Conference on Image Processing (ICIP), 2013, pp. 3967–3971 (2013) Plant Taxonomy 2E: McGraw-Hill Education (India) Pvt Limited. https://books.google.com.my/books?id=_px_WAwHiZIC (2009) Amlekar, M.; Manza, R.R.; Yannawar, P.; Gaikwad, A.T.: Leaf features based plant classification using artificial neural network. IBMRD’s J. Manag. Res. 3(1), 224–232 (2014) Casanova, D.; Backes, A.R.; Bruno, O.M.: Pattern recognition tool based on complex network-based approach. In: Journal of Physics: Conference Series, p. 012048 (2013) Kadir, A.; Nugroho, L.E.; Susanto, A.; Santosa, P.I.: Leaf classification using shape, color, and texture features. arXiv preprint arXiv:1401.4447 (2013b) Kadir, A.; Nugroho, L.E.; Susanto, A.; Santosa, P.I.: Neural network application on foliage plant identification. arXiv preprint arXiv:1311.5829 (2013c) Kadir, A.; Nugroho, L.E.; Susanto, A.; Santosa, P.I.: Foliage plant retrieval using polar Fourier transform, color moments and vein features. arXiv preprint arXiv:1110.1513 (2011b) Mishra, M.K.; Dandamudi, P.; Nayani, S.P.; Munikoti, S.S.; Chelukunda, S.S.; et al.: Variability in stomatal features and leaf venation pattern in Indian coffee (Coffea arabica L.) cultivars and their functional significance. Bot. Serbica (Serbia) (2011) Pornpanomchai, C.; Supapattranon, C.K.; Siriwisesokul, N.: Leaf and flower recognition system (e-Botanist). Int. J. Eng. Technol. 3(4), 347 (2011) Rolland-Lagan, A.-G.; Amin, M.; Pakulska, M.: Quantifying leaf venation patterns: two-dimensional maps. Plant J. Cell Mol. Biol. 57(1), 195–205 (2009). https://doi.org/10.1111/j.1365-313X.2008.03678.x De Oliveira Plotze, R.; Bruno, O.M.: Automatic leaf structure biometry: computer vision techniques and their applications in plant taxonomy. Int. J. Pattern Recognit. Artif. Intell. 23(02), 247–262 (2009) Syahputra, H.; Harjoko, A.; Wardoyo, R.; Pulungan, R.: Plant recognition using stereo leaf image using gray-level co-occurrence matrix. J. Comput. Sci. 10(4), 697 (2014) Mouine, S.; Yahiaoui, I.; Verroust-Blondet, A.: Advanced shape context for plant species identification using leaf image retrieval. In: Proceedings of the 2nd ACM International Conference on Multimedia Retrieval, p. 49 (2012) Mouine, S.; Yahiaoui, I.; Verroust-Blondet, A.: Combining leaf salient points and leaf contour descriptions for plant species recognition. In: Image Analysis and Recognition, pp. 205–214 (2013b) Jobin, A.; Nair, M.S.; Tatavarti, R.: Plant identification based on fractal refinement technique (FRT). Procedia Technol. 6, 171–179 (2012) Cope, J.S.; Remagnino, P.; Barman, S.; Wilkin, P.: The extraction of venation from leaf images by evolved vein classifiers and ant colony algorithms. In: Advanced Concepts for Intelligent Vision Systems, pp. 135–144 (2010b) Li, Y.; Chi, Z.; Feng, D.D.: Leaf vein extraction using independent component analysis. In: IEEE International Conference on Systems, Man and Cybernetics, 2006, SMC’06, pp. 3890–3894 (2006) Alkawaz, M.H.; Sulong, G.; Saba, T.; Almazyad, A.S.; Rehman, A.: Concise analysis of current text automation and watermarking approaches. Secur. Commun. Netw. 9(18), 6365–6378 (2017) WorkWithColor.com.: Cyan. http://www.workwithcolor.com/cyan-color-hue-range-01.htm. Accessed 27 Dec 2017 Joblove, G.H.; Greenberg, D.: Color spaces for computer graphics. In: ACM Siggraph Computer Graphics, vol. 12, no. 3, pp. 20–25. ACM (1978) Ibrahim, N.B.; Selim, M.M.; Zayed, H.H.: A dynamic skin detector based on face skin tone color. In: 8th International Conference on Informatics and Systems (INFOS), 2012, pp. MM-1 (2012) Satti, V.; Satya, A.; Sharma, S.: An automatic leaf recognition system for plant identification using machine vision technology. Int. J. Eng. Sci. Technol. 5(4), 874 (2013) Chaki, J.; Parekh, R.; Bhattacharya, S.: Plant leaf recognition using texture and shape features with neural classifiers. Pattern Recogn. Lett. 58, 61–68 (2015) Arun, C.; Emmanuel, W.S.; Durairaj, D.C.: Texture feature extraction for identification of medicinal plants and comparison of different classifiers. Int. J. Comput. Appl. 62(12), 1–9 (2013) Wu, S.G.; Bao, F.S.; Xu, E.Y.; Wang, Y.X.; Chang, Y.F.; Xiang, Q.L.: A leaf recognition algorithm for plant classification using probabilistic neural network. IEEE Int. Symp. Sig. Process. Info. Technol. 11–16 (2007)