Bifurcating extremal domains for the first eigenvalue of the Laplacian

Advances in Mathematics - Tập 229 - Trang 602-632 - 2012
Felix Schlenk1, Pieralberto Sicbaldi2
1Institut de Mathématiques, Université de Neuchâtel, Rue Émile Argand 11, CP 158, 2009 Neuchâtel, Switzerland
2Laboratoire dʼAnalyse Topologie Probabilités, Université Aix-Marseille 3, Avenue de lʼEscadrille Normandie Niemen, 13397 Marseille cedex 20, France

Tài liệu tham khảo

Aftalion, 1997, Symétrie radiale pour des problèmes elliptiques surdéterminés posés dans des domaines extérieurs, C. R. Acad. Sci. Paris Sér. I Math., 324, 633, 10.1016/S0764-4442(97)86980-7 Berestycki, 1997, Monotonicity for elliptic equations in unbounded Lipschitz domains, Comm. Pure Appl. Math., 50, 1089, 10.1002/(SICI)1097-0312(199711)50:11<1089::AID-CPA2>3.0.CO;2-6 Colding, 1999, Minimal Surfaces, vol. 4 Crandall, 1971, Bifurcation from simple eigenvalues, J. Funct. Anal., 8, 321, 10.1016/0022-1236(71)90015-2 Delaunay, 1841, Sur la surface de révolution dont la courbure moyenne est constante, J. Math. Pures Appl. (1), 6, 309 Eells, 1987, The surfaces of Delaunay, Math. Intelligencer, 9, 53, 10.1007/BF03023575 Elbert, 1984, On the square of the zeros of Bessel functions, SIAM J. Math. Anal., 15, 206, 10.1137/0515017 El Soufi, 2007, Domain deformations and eigenvalues of the Dirichlet Laplacian in a Riemannian manifold, Illinois J. Math., 51, 645, 10.1215/ijm/1258138436 Faber, 1923, Beweis, dass unter allen homogenen Membranen von gleicher Fläche und gleicher Spannung die kreisförmige den tiefsten Grundton gibt, Sitz.ber. - Bayer. Akad. Wiss. München Math.-Phys. Kl., 169 Farina, 2010, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Ration. Mech. Anal., 195, 1025, 10.1007/s00205-009-0227-8 Garabedian, 1953, Variational problems in the theory of elliptic partial differential equations, J. Ration. Mech. Anal., 2, 137 Gilbarg, 2001, Elliptic Partial Differential Equations of Second Order, 10.1007/978-3-642-61798-0 Hélein, 2011, A note on some overdetermined problems, Pacific J. Math., 250, 319, 10.2140/pjm.2011.250.319 Henrot, 2006, Extremum Problems for Eigenvalues of Elliptic Operators, 10.1007/3-7643-7706-2 Kielhöfer, 2004, Bifurcation Theory: An Introduction with Applications to PDEs, vol. 156 Korevaar, 1989, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom., 30, 465, 10.4310/jdg/1214443598 Krahn, 1924, Über eine von Raleigh formulierte Minimaleigenschaft der Kreise, Math. Ann., 94, 97, 10.1007/BF01208645 Lang, 1996, “Best possible” upper bounds for the first two positive zeros of the Bessel function Jν(x): the infinite case, J. Comput. Appl. Math., 71, 311, 10.1016/0377-0427(95)00220-0 Pacard, 2009, Extremal domains for the first eigenvalue of the Laplace–Beltrami operator, Ann. Inst. Fourier, 59, 515, 10.5802/aif.2438 Pucci, 2007, The Maximum Principle, vol. 73 Rayleigh, 1879, On the instability of jets, Proc. London Math. Soc., 4 Reichel, 1997, Radial symmetry for elliptic boundary-value problems on exterior domains, Arch. Ration. Mech. Anal., 137, 381, 10.1007/s002050050034 Serrin, 1971, A symmetry problem in potential theory, Arch. Ration. Mech. Anal., 43, 304, 10.1007/BF00250468 Sicbaldi, 2010, New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var. Partial Differential Equations, 37, 329, 10.1007/s00526-009-0264-z Smoller, 1994, Shock Waves and Reaction–Diffusion Equations, vol. 258 Watson, 1944