Super-suppression of long phonon mean-free-paths in nano-engineered Si due to heat current anticorrelations
Tài liệu tham khảo
Ma, 2019, Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction, Mater. Today Phys., 8
Wu, 2012, Thermal conductivity of bulk and nanowire mg2sixsn1-x alloys from first principles, Phys. Rev. B, 86, 174307, 10.1103/PhysRevB.86.174307
Zhou, 2016, Record low thermal conductivity of polycrystalline si nanowire: breaking the casimir limit by severe suppression of propagons, Nano Lett., 16, 6178, 10.1021/acs.nanolett.6b02450
Cheaito, 2012, Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films, Phys. Rev. Lett., 109, 195901, 10.1103/PhysRevLett.109.195901
Braun, 2016, Size effects on the thermal conductivity of amorphous silicon thin films, Phys. Rev. B, 93, 140201, 10.1103/PhysRevB.93.140201
Aria Hosseini, 2021
Miura, 2015, Crystalline–amorphous silicon nanocomposites with reduced thermal conductivity for bulk thermoelectrics, ACS Appl. Mater., 7, 13484, 10.1021/acsami.5b02537
Liao, 2015, Nanocomposites for thermoelectrics and thermal engineering, MRS Bull., 40, 746, 10.1557/mrs.2015.197
Hu, 2012, Si/ge superlattice nanowires with ultralow thermal conductivity, Nano Lett., 12, 5487, 10.1021/nl301971k
Mu, 2015, Ultra-low thermal conductivity in si/ge hierarchical superlattice nanowire, Sci. Rep., 5, 1, 10.1038/srep16697
Garg, 2013, Minimum thermal conductivity in superlattices: a first-principles formalism, Phys. Rev. B, 87, 140302, 10.1103/PhysRevB.87.140302
Liu, 2020, Thermoelectric properties of holey silicon at elevated temperatures, Mater. Today Phys., 14, 100224, 10.1016/j.mtphys.2020.100224
Shi, 2018, Polycrystalline snse with extraordinary thermoelectric property via nanoporous design, ACS Nano, 12, 11417, 10.1021/acsnano.8b06387
de Sousa Oliveira, 2019, Large-scale molecular dynamics investigation of geometrical features in nanoporous Si, Phys. Rev. B, 100, 10.1103/PhysRevB.100.035409
Lim, 2016, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon, ACS Nano, 10, 124, 10.1021/acsnano.5b05385
Aria Hosseini, 2022
Zhou, 2021, Assessing the quantum effect in classical thermal conductivity of amorphous silicon, Int. J. Appl. Phys., 129, 235104, 10.1063/5.0054039
Aria Hosseini, 2021, Mitigating the effect of nanoscale porosity on thermoelectric power factor of si, ACS Appl. Energy Mater., 4, 1915, 10.1021/acsaem.0c02640
Lim, 2016, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon, ACS Nano, 10, 124, 10.1021/acsnano.5b05385
Tang, 2010, Holey silicon as an efficient thermoelectric material, Nano Lett., 10, 4279, 10.1021/nl102931z
Chakraborty, 2018, Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures, Phys. Rev. B, 98, 115435, 10.1103/PhysRevB.98.115435
Lee, 2007, Lattice thermal conductivity of nanoporous si: molecular dynamics study, Appl. Phys. Lett., 91, 223110, 10.1063/1.2817739
He, 2011, Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales, ACS Nano, 5, 1839, 10.1021/nn2003184
Dettori, 2015, Model for thermal conductivity in nanoporous silicon from atomistic simulations, Phys. Rev. B, 91, 10.1103/PhysRevB.91.054305
Lee, 2008, Nanoporous si as an efficient thermoelectric material, Nano Lett., 8, 3750, 10.1021/nl802045f
Liu, 2010, Thermal conductivity modeling of micro- and nanoporous silicon, Int. J. Therm. Sci., 49, 1547, 10.1016/j.ijthermalsci.2010.04.003
Han, 2020, Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder, Nano Energy, 71, 104619, 10.1016/j.nanoen.2020.104619
Lee, 2017, Investigation of phonon coherence and backscattering using silicon nanomeshes, Nat. Commun., 8, 1
Xiong, 2018, Thermal transport in supported graphene nanomesh, ACS Appl. Mater. Interfaces, 10, 9211, 10.1021/acsami.8b00097
Romano, 2017, Phonon bottleneck identification in disordered nanoporous materials, Phys. Rev. B, 96, 115425, 10.1103/PhysRevB.96.115425
Wolf, 2014, Thermal conductivity of silicon nanomeshes: effects of porosity and roughness, Int. J. Appl. Phys., 115, 204306, 10.1063/1.4879242
Verdier, 2016, Crystalline-amorphous silicon nano-composites: nano-pores and nano-inclusions impact on the thermal conductivity, Int. J. Appl. Phys., 119, 175104, 10.1063/1.4948337
Chakraborty, 2020, Effect of wave versus particle phonon nature in thermal transport through nanostructures, Comput. Mater. Sci., 180, 109712, 10.1016/j.commatsci.2020.109712
Oliveira, 2020, Heat current anticorrelation effects leading to thermal conductivity reduction in nanoporous si, Phys. Rev. B, 102, 205405, 10.1103/PhysRevB.102.205405
Aria Hosseini, 2022, Universal effective medium theory to predict the thermal conductivity in nanostructured materials, Int. J. Heat Mass Tran., 183, 122040, 10.1016/j.ijheatmasstransfer.2021.122040
Parrish, 2017, Phonon-boundary scattering in nanoporous silicon films: comparison of Monte Carlo techniques, Int. J. Appl. Phys., 122, 125101, 10.1063/1.4993601
Zhou, 2021, Thermal transfer in amorphous superionic Li2S, Phys. Rev. B, 103, 224204, 10.1103/PhysRevB.103.224204
Zhou, 2022, Origin of the weakly temperature-dependent thermal conductivity in zif-4 and zif-62, Phys. Rev. Materials, 6, 10.1103/PhysRevMaterials.6.015403
de Sousa Oliveira, 2017, Method to manage integration error in the green-kubo method, Phys. Rev. E, 95
Melville, 1954, Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids, J. Chem. Phys., 22, 398, 10.1063/1.1740082
Ryogo, 1957, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, 12, 570, 10.1143/JPSJ.12.570
Romano, 2021
Zhou, 2021, Vibrational modes with long mean free path and large volumetric heat capacity drive higher thermal conductivity in amorphous zeolitic imidazolate framework-4, Mater. Today Phys., 21, 100516, 10.1016/j.mtphys.2021.100516
Bryk, 2000, Generalized hydrodynamics of binary liquids: transverse collective modes, Phys. Rev. E, 62, 2188, 10.1103/PhysRevE.62.2188
Lawson, 2011, Lattice thermal conductivity of ultra high temperature ceramics zrb2 and hfb2 from atomistic simulations, Int. J. Appl. Phys., 110
McGaughey, 2004, Thermal conductivity decomposition and analysis using molecular dynamics simulations. part i. Lennard-Jones argon, Int. J. Heat Mass Tran., 47, 1783, 10.1016/j.ijheatmasstransfer.2003.11.002
Justin, 2014, Haskins, Alper Kınacı, Cem Sevik, and Tahir Çağın. Equilibrium limit of thermal conduction and boundary scattering in nanostructures, J. Chem. Phys., 140, 244112, 10.1063/1.4884392
Latour, 2014, Microscopic description of thermal-phonon coherence: from coherent transport to diffuse interface scattering in superlattices, Phys. Rev. B, 90, 10.1103/PhysRevB.90.014307
S. Aria Hosseini, Giuseppe Romano, and P. Alex Greaney. Enhanced thermoelectric performance of polycrystalline si0.8ge0.2 alloys through the addition of nanoscale porosity. J. Nanomater., 11(10), 2021.
Mazumder, 2001, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization, J. Heat Tran., 123, 749, 10.1115/1.1377018
Chakraborty, 2018, Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures, Phys. Rev. B, 98, 115435, 10.1103/PhysRevB.98.115435
Chakraborty, 2019, Thermal rectification optimization in nanoporous si using Monte Carlo simulations, Int. J. Appl. Phys., 126, 184303, 10.1063/1.5119806
Wolf, 2014, Thermal conductivity of silicon nanomeshes: effects of porosity and roughness, Int. J. Appl. Phys., 115, 204306, 10.1063/1.4879242
Jean, 2014, Monte Carlo simulations of phonon transport in nanoporous silicon and germanium, Int. J. Appl. Phys., 115
Wang, 2011, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths, Nano Lett., 11, 2206, 10.1021/nl1045395
Yang, 2017, Thermal transport in nanocrystalline si and sige by ab initio based Monte Carlo simulation, Sci. Rep., 7, 1
Yang, 2021, Quantitatively predicting modal thermal conductivity of nanocrystalline si by full-band Monte Carlo simulations, Phys. Rev. B, 104, 195303, 10.1103/PhysRevB.104.195303
Harter, 2019, Prediction of thermal conductivity in dielectrics using fast, spectrally-resolved phonon transport simulations, Int. J. Heat Mass Tran., 144, 118595, 10.1016/j.ijheatmasstransfer.2019.118595
Tang, 2010, Holey silicon as an efficient thermoelectric material, Nano Lett., 10, 4279, 10.1021/nl102931z
Carrete, 2017, A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials, Comput. Phys. Commun., 220, 351, 10.1016/j.cpc.2017.06.023