Super-suppression of long phonon mean-free-paths in nano-engineered Si due to heat current anticorrelations

Materials Today Physics - Tập 27 - Trang 100719 - 2022
S. Aria Hosseini1, Alathea Davies2, Ian Dickey1, Neophytos Neophytou3, P. Alex Greaney1, Laura de Sousa Oliveira2
1Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA
2Department of Chemistry, University of Wyoming, Laramie, WY 82071 USA
3School of Engineering, University of Warwick, Coventry CV4 7AL, United Kingdom

Tài liệu tham khảo

Ma, 2019, Quantifying phonon particle and wave transport in silicon nanophononic metamaterial with cross junction, Mater. Today Phys., 8 Wu, 2012, Thermal conductivity of bulk and nanowire mg2sixsn1-x alloys from first principles, Phys. Rev. B, 86, 174307, 10.1103/PhysRevB.86.174307 Zhou, 2016, Record low thermal conductivity of polycrystalline si nanowire: breaking the casimir limit by severe suppression of propagons, Nano Lett., 16, 6178, 10.1021/acs.nanolett.6b02450 Cheaito, 2012, Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films, Phys. Rev. Lett., 109, 195901, 10.1103/PhysRevLett.109.195901 Braun, 2016, Size effects on the thermal conductivity of amorphous silicon thin films, Phys. Rev. B, 93, 140201, 10.1103/PhysRevB.93.140201 Aria Hosseini, 2021 Miura, 2015, Crystalline–amorphous silicon nanocomposites with reduced thermal conductivity for bulk thermoelectrics, ACS Appl. Mater., 7, 13484, 10.1021/acsami.5b02537 Liao, 2015, Nanocomposites for thermoelectrics and thermal engineering, MRS Bull., 40, 746, 10.1557/mrs.2015.197 Hu, 2012, Si/ge superlattice nanowires with ultralow thermal conductivity, Nano Lett., 12, 5487, 10.1021/nl301971k Mu, 2015, Ultra-low thermal conductivity in si/ge hierarchical superlattice nanowire, Sci. Rep., 5, 1, 10.1038/srep16697 Garg, 2013, Minimum thermal conductivity in superlattices: a first-principles formalism, Phys. Rev. B, 87, 140302, 10.1103/PhysRevB.87.140302 Liu, 2020, Thermoelectric properties of holey silicon at elevated temperatures, Mater. Today Phys., 14, 100224, 10.1016/j.mtphys.2020.100224 Shi, 2018, Polycrystalline snse with extraordinary thermoelectric property via nanoporous design, ACS Nano, 12, 11417, 10.1021/acsnano.8b06387 de Sousa Oliveira, 2019, Large-scale molecular dynamics investigation of geometrical features in nanoporous Si, Phys. Rev. B, 100, 10.1103/PhysRevB.100.035409 Lim, 2016, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon, ACS Nano, 10, 124, 10.1021/acsnano.5b05385 Aria Hosseini, 2022 Zhou, 2021, Assessing the quantum effect in classical thermal conductivity of amorphous silicon, Int. J. Appl. Phys., 129, 235104, 10.1063/5.0054039 Aria Hosseini, 2021, Mitigating the effect of nanoscale porosity on thermoelectric power factor of si, ACS Appl. Energy Mater., 4, 1915, 10.1021/acsaem.0c02640 Lim, 2016, Simultaneous thermoelectric property measurement and incoherent phonon transport in holey silicon, ACS Nano, 10, 124, 10.1021/acsnano.5b05385 Tang, 2010, Holey silicon as an efficient thermoelectric material, Nano Lett., 10, 4279, 10.1021/nl102931z Chakraborty, 2018, Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures, Phys. Rev. B, 98, 115435, 10.1103/PhysRevB.98.115435 Lee, 2007, Lattice thermal conductivity of nanoporous si: molecular dynamics study, Appl. Phys. Lett., 91, 223110, 10.1063/1.2817739 He, 2011, Thermal transport in nanoporous silicon: interplay between disorder at mesoscopic and atomic scales, ACS Nano, 5, 1839, 10.1021/nn2003184 Dettori, 2015, Model for thermal conductivity in nanoporous silicon from atomistic simulations, Phys. Rev. B, 91, 10.1103/PhysRevB.91.054305 Lee, 2008, Nanoporous si as an efficient thermoelectric material, Nano Lett., 8, 3750, 10.1021/nl802045f Liu, 2010, Thermal conductivity modeling of micro- and nanoporous silicon, Int. J. Therm. Sci., 49, 1547, 10.1016/j.ijthermalsci.2010.04.003 Han, 2020, Genetic algorithm-driven discovery of unexpected thermal conductivity enhancement by disorder, Nano Energy, 71, 104619, 10.1016/j.nanoen.2020.104619 Lee, 2017, Investigation of phonon coherence and backscattering using silicon nanomeshes, Nat. Commun., 8, 1 Xiong, 2018, Thermal transport in supported graphene nanomesh, ACS Appl. Mater. Interfaces, 10, 9211, 10.1021/acsami.8b00097 Romano, 2017, Phonon bottleneck identification in disordered nanoporous materials, Phys. Rev. B, 96, 115425, 10.1103/PhysRevB.96.115425 Wolf, 2014, Thermal conductivity of silicon nanomeshes: effects of porosity and roughness, Int. J. Appl. Phys., 115, 204306, 10.1063/1.4879242 Verdier, 2016, Crystalline-amorphous silicon nano-composites: nano-pores and nano-inclusions impact on the thermal conductivity, Int. J. Appl. Phys., 119, 175104, 10.1063/1.4948337 Chakraborty, 2020, Effect of wave versus particle phonon nature in thermal transport through nanostructures, Comput. Mater. Sci., 180, 109712, 10.1016/j.commatsci.2020.109712 Oliveira, 2020, Heat current anticorrelation effects leading to thermal conductivity reduction in nanoporous si, Phys. Rev. B, 102, 205405, 10.1103/PhysRevB.102.205405 Aria Hosseini, 2022, Universal effective medium theory to predict the thermal conductivity in nanostructured materials, Int. J. Heat Mass Tran., 183, 122040, 10.1016/j.ijheatmasstransfer.2021.122040 Parrish, 2017, Phonon-boundary scattering in nanoporous silicon films: comparison of Monte Carlo techniques, Int. J. Appl. Phys., 122, 125101, 10.1063/1.4993601 Zhou, 2021, Thermal transfer in amorphous superionic Li2S, Phys. Rev. B, 103, 224204, 10.1103/PhysRevB.103.224204 Zhou, 2022, Origin of the weakly temperature-dependent thermal conductivity in zif-4 and zif-62, Phys. Rev. Materials, 6, 10.1103/PhysRevMaterials.6.015403 de Sousa Oliveira, 2017, Method to manage integration error in the green-kubo method, Phys. Rev. E, 95 Melville, 1954, Markoff random processes and the statistical mechanics of time-dependent phenomena. ii. irreversible processes in fluids, J. Chem. Phys., 22, 398, 10.1063/1.1740082 Ryogo, 1957, Statistical-mechanical theory of irreversible processes. i. general theory and simple applications to magnetic and conduction problems, J. Phys. Soc. Japan, 12, 570, 10.1143/JPSJ.12.570 Romano, 2021 Zhou, 2021, Vibrational modes with long mean free path and large volumetric heat capacity drive higher thermal conductivity in amorphous zeolitic imidazolate framework-4, Mater. Today Phys., 21, 100516, 10.1016/j.mtphys.2021.100516 Bryk, 2000, Generalized hydrodynamics of binary liquids: transverse collective modes, Phys. Rev. E, 62, 2188, 10.1103/PhysRevE.62.2188 Lawson, 2011, Lattice thermal conductivity of ultra high temperature ceramics zrb2 and hfb2 from atomistic simulations, Int. J. Appl. Phys., 110 McGaughey, 2004, Thermal conductivity decomposition and analysis using molecular dynamics simulations. part i. Lennard-Jones argon, Int. J. Heat Mass Tran., 47, 1783, 10.1016/j.ijheatmasstransfer.2003.11.002 Justin, 2014, Haskins, Alper Kınacı, Cem Sevik, and Tahir Çağın. Equilibrium limit of thermal conduction and boundary scattering in nanostructures, J. Chem. Phys., 140, 244112, 10.1063/1.4884392 Latour, 2014, Microscopic description of thermal-phonon coherence: from coherent transport to diffuse interface scattering in superlattices, Phys. Rev. B, 90, 10.1103/PhysRevB.90.014307 S. Aria Hosseini, Giuseppe Romano, and P. Alex Greaney. Enhanced thermoelectric performance of polycrystalline si0.8ge0.2 alloys through the addition of nanoscale porosity. J. Nanomater., 11(10), 2021. Mazumder, 2001, Monte Carlo study of phonon transport in solid thin films including dispersion and polarization, J. Heat Tran., 123, 749, 10.1115/1.1377018 Chakraborty, 2018, Monte Carlo phonon transport simulations in hierarchically disordered silicon nanostructures, Phys. Rev. B, 98, 115435, 10.1103/PhysRevB.98.115435 Chakraborty, 2019, Thermal rectification optimization in nanoporous si using Monte Carlo simulations, Int. J. Appl. Phys., 126, 184303, 10.1063/1.5119806 Wolf, 2014, Thermal conductivity of silicon nanomeshes: effects of porosity and roughness, Int. J. Appl. Phys., 115, 204306, 10.1063/1.4879242 Jean, 2014, Monte Carlo simulations of phonon transport in nanoporous silicon and germanium, Int. J. Appl. Phys., 115 Wang, 2011, Thermal conductivity of nanocrystalline silicon: importance of grain size and frequency-dependent mean free paths, Nano Lett., 11, 2206, 10.1021/nl1045395 Yang, 2017, Thermal transport in nanocrystalline si and sige by ab initio based Monte Carlo simulation, Sci. Rep., 7, 1 Yang, 2021, Quantitatively predicting modal thermal conductivity of nanocrystalline si by full-band Monte Carlo simulations, Phys. Rev. B, 104, 195303, 10.1103/PhysRevB.104.195303 Harter, 2019, Prediction of thermal conductivity in dielectrics using fast, spectrally-resolved phonon transport simulations, Int. J. Heat Mass Tran., 144, 118595, 10.1016/j.ijheatmasstransfer.2019.118595 Tang, 2010, Holey silicon as an efficient thermoelectric material, Nano Lett., 10, 4279, 10.1021/nl102931z Carrete, 2017, A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials, Comput. Phys. Commun., 220, 351, 10.1016/j.cpc.2017.06.023