Study of thermoviscous dissipation on axisymmetric wave propagating in a shear pipeline flow confined by rigid wall. Part I. theoretical formulation

Pleiades Publishing Ltd - Tập 62 - Trang 27-37 - 2016
Yong Chen1, Xiaoqian Chen1, Yiyong Huang1, Yuzhu Bai1, Dengpeng Hu2, Shaoming Fei3
1College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, China
2Air Force Early Warning Academy, Wuhan, China
3Electronic Experiment Center, Chengdu University of Information Technology, Chengdu, China

Tóm tắt

Axisymmetric acoustic wave propagation in a shear pipeline flow confined by a rigid wall is studied in the two-part paper. The effects of viscous friction and thermal conduction on the acoustic wave propagating in the liquid and perfect gas are respectively analyzed under different configurations of acoustic frequency and shear flow profile. In Part 1 of this paper, mathematical models of non-isentropic and isentropic acoustic waves are formulated based on the conservation of mass, momentum and energy for both liquid and perfect gas. Meanwhile, comprehensive solutions based on the Fourier-Bessel theory are provided, which gives a general methodology of iteratively calculating features of the acoustic wave. Numerical comparisons with previous simplified models verify the validity of the proposed models and solutions.

Tài liệu tham khảo

V. M. Butorin, Acoust. Phys. 59, 625 (2013). A. Gupta, K.-M. Lim, and C. C. Heng, Acoust. Phys. 59, 493 (2013). A. I. Komkin, M. A. Mironov, and S. I. Yudin, Acoust. Phys. 60, 145 (2014). V. F. Kovalev and O. V. Rudenko, Acoust. Phys. 58, 269 (2012). A. A. Osipov and K. S. Reent, Acoust. Phys. 58, 467 (2012). A. F. Sobolev, Acoust. Phys. 58, 490 (2012). E. J. Brambley, A. M. J. Davis, and N. Peake, J. Fluid Mech. 690, 399 (2012). V. F. Kopiev, M. Y. Zaytsev, and N. N. Ostrikov, Acoust. Phys. 59, 207 (2013). V. F. Kopiev, I. V. Belyaev, M. Y. Zaytsev, V. A. Kopiev, and G. A. Faranosov, Acoust. Phys. 59, 19 (2013). Y. D. Khaletskiy, Acoust. Phys. 58, 556 (2012). B. M. Efimtsov and L. A. Lazarev, Acoust. Phys. 58, 443 (2012). G. I. Broman and O. V. Rudenko, Acoust. Phys. 58, 537 (2012). I. V. Belyaev, Acoust. Phys. 58, 387 (2012). K. S. Peat, J. Sound Vib. 175, 475 (1994). K. S. Peat and R. Kirby, J. Acoust. Soc. Am. 107, 1859 (2000). Y. Chen, Y. Huang, and X. Chen, J. Acoust. Soc. Am. 134, 1863 (2013). Y. Chen, Y. Huang, and X. Chen, Acta Acust. Acust. 99, 875 (2013). Y. Chen, Y. Huang, and X. Chen, Commun. Nonlinear Sci. Numer. Simulat. 18, 3023 (2013). V. E. Nazarov and S. B. Kiyashko, Acoust. Phys. 59, 127 (2013). L. Rayleigh, Theory of Sound, Vol. 2, (Macmillan, London, 1896), pp. 319–326. H. Tijdeman, J. Sound Vib. 39, 1 (1975). E. Dokumaci, J. Sound Vib. 210, 375 (1998). E. Dokumaci, J. Sound Vib. 182, 799 (1995). L. Elvira-Segura, Ultrasonics. 37, 537 (2000). Y. Chen, Y. Huang, and X. Chen, J. Acoust. Soc. Am. 134, 2619 (2013). D. Blokhintzev, J. Acoust. Soc. Am. 18, 322 (1946). B. G. Korenev, Bessel Functions and Their Applications (Taylor and Franics, London, 2002). Y. Chen, Y. Huang, X. Chen, and D. Hu, J. Comput. Acoust. 22, 1450014 (2014).