Preparation of bioactive flexible poly(tetramethylene oxide) (PTMO)–CaO–Ta2O5 hybrids

Springer Science and Business Media LLC - Tập 18 - Trang 1117-1124 - 2007
Masanobu Kamitakahara1, Masakazu Kawashita2, Noboru Miyata3, Tadashi Kokubo4, Takashi Nakamura5
1Graduate School of Materials Science, Nara Institute of Science and Technology, Ikoma-shi, Nara, Japan
2Ion Beam Engineering Experimental Laboratory, Graduate School of Engineering, Kyoto University, Kyoto-shi, Japan
3Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto-shi, Japan
4Research Institute for Science and Technology, Chubu University, Kasugai-shi, Aichi, Japan
5Department of Orthopaedic Surgery, Graduate School of Medicine, Kyoto University, Kyoto-shi, Japan

Tóm tắt

Poly(tetramethylene oxide) (PTMO)–CaO–Ta2O5 hybrids were prepared by hydrolysis and polycondensation of triethoxysilane-functionalized PTMO (Si–PTMO), tantalum ethoxide (Ta(OEt)5) and CaCl2. In the system CaO-free PTMO–Ta2O5, Si–PTMO/Ta(OEt)5 weight ratios were 30/70, 40/60 and 50/50 (hybrids PT30Ca0, PT40Ca0 and PT50Ca0, respectively). In the system PTMO–CaO–Ta2O5, the Si–PTMO/Ta(OEt)5 weight ratio was 40/60 and CaCl2/Ta(OEt)5 mole ratios were 0.05, 0.10 and 0.15 (hybrids PT40Ca5, PT40Ca10 and PT40Ca15, respectively). Crack-free transparent monolithic hybrids were obtained for all the examined compositions except for PT30Ca0. Even CaO-free hybrids PT40Ca0 and PT50Ca0 formed apatite on their surfaces in a simulated body fluid (SBF) within 14 days. Hybrid PT40Ca0 showed higher mechanical strength, which was increased by soaking in SBF, and larger strain to failure than human cancellous bone. The CaO-containing hybrids showed higher apatite-forming ability than the CaO-free hybrids, and its apatite-forming ability increased with increasing CaO content. Hybrids PT40Ca10 and PT40Ca15 formed apatite within 3 days. The mechanical strength of PT40Ca15 was, however, lower than PT40Ca0 and was decreased by soaking in SBF. Thus obtained flexible bioactive CaO-free PTMO–Ta2O5 hybrids are expected to be useful as bone substitutes.

Tài liệu tham khảo

L. L. HENCH, R. J. SPLINTER, W. C. ALLEN and T. K. GREENLEE Jr, J. Biomed. Mater. Res. Symp. 2 (1971) 117. M. JARCHO, J. L. KAY, R. H. GUMAER and H. P. DROBECK, J. Bioeng. 1 (1977) 79. T. KOKUBO, M. SHIGEMATSU, Y. NAGASHIMA, M. TASHIRO, T. NAKAMURA, T. YAMAMURO and S. HIGASHI, Bull. Inst. Chem. Res., Kyoto Univ. 60 (1982) 260. W. BONFIELD, M. D. GRYNPAS, A. E. TULLY, J. BOWMAN and J. ABRAM, Biomaterials 2 (1981) 185. L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487. H. SCHMIDT, J. Non-Cryst. Solids 73 (1985) 681. G. L. WILKES, B. ORLER and H.-H. HUANG, Polymer Prepr. 26 (1985) 300. J. D. MACKENZIE, Y. J. CHUNG and Y. HU, J. Non-Cryst. Solids 147–148 (1992) 271. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA and T. YAMAMURO, J. Am. Ceram. Soc. 75 (1992) 2094. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA, T. NAKAMURA and T. YAMAMURO, J. Appl. Biomater. 4 (1993) 221. P. LI, C. OHTSUKI, T. KOKUBO, K. NAKANISHI, N. SOGA and K. DE GROOT, J. Biomed. Mater. Res. 28 (1994) 7. P. LI, I. KANGASNIEMI, K. DE GROOT and T. KOKUBO, J. Am. Ceram. Soc. 77 (1994) 1307. M. UCHIDA, H.-M. KIM, T. KOKUBO, S. FUJIBAYASHI and T. NAKAMURA, J. Biomed. Mater. Res. 64A (2003) 164. T. MIYAZAKI, H.-M. KIM, T. KOKUBO, H. KATO and T. NAKAMURA, J. Sol-Gel Sci. Technol. 21 (2001) 83. M. UCHIDA, H.-M. KIM, F. MIYAJI, T. KOKUBO and T. NAKAMURA, J. Am. Ceram. Soc. 84 (2001) 2041. M. UCHIDA, H.-M. KIM, T. KOKUBO, K. TANAKA and T. NAKAMURA, J. Ceram. Soc. Jpn 110 (2002) 710. T. MIYAZAKI, H.-M. KIM, T. KOKUBO, C. OHTSUKI and T. NAKAMURA, J. Ceram. Soc. Jpn 109 (2001) 929. T. KOKUBO, H. KUSHITANI, S. SAKKA, T. KITSUGI and T. YAMAMURO, J. Biomed. Mater. Res. 24 (1990) 721. K. TSURU, C. OHTSUKI, A. OSAKA, T. IWAMOTO and J. D. MACKENZIE, J. Mater. Sci.: Mater. Med. 8 (1997) 157. M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Sol-Gel Sci. Technol. 21 (2001) 75. M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Mater. Sci.: Mater. Med. 13 (2002) 1015. Q. CHEN, F. MIYAJI, T. KOKUBO and T. NAKAMURA, Biomaterials 20 (1999) 1127. Q. CHEN, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Biomed. Mater. Res. 51 (2000) 605. Q. CHEN, M. KAMITAKAHARA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Sol-Gel Sci. Technol. 19 (2000) 101. Q. CHEN, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Mater. Sci.: Mater. Med. 12 (2001) 515. N. MIYATA, K. FUKE, Q. CHEN, M. KAWASHITA, T. KOKUBO and T. NAKAMURA, Biomaterials 23 (2002) 3033. N. MIYATA, K. FUKE, Q. CHEN, M. KAWASHITA, T. KOKUBO and T. NAKAMURA, Biomaterials 25 (2004) 1. N. MIYATA, K. FUKE, Q. CHEN, M. KAWASHITA, T. KOKUBO and T. NAKAMURA, J. Ceram. Soc. Jpn 111 (2003) 555. M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Am. Ceram. Soc. 87 (2004) 235. M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, J. Mater. Sci.: Mater. Med. 14 (2003) 1067. M. KAMITAKAHARA, M. KAWASHITA, N. MIYATA, T. KOKUBO and T. NAKAMURA, Biomaterials 24 (2003) 1357. T. KOKUBO, Biomaterials 12 (1991) 155. A. B. BRENNAN and T. M. MILLER, Mat. Res. Soc. Symp. Proc. 435 (1996) 155. L. L. HENCH and J. WILSON, in “An introduction to bioceramics”, edited by L. L. Hench and J. Wilson, World Scientific, Singapore, 1993, p. 12. C. OHTSUKI, T. KOKUBO and T. YAMAMURO, J. Non-Cryst. Solids 143 (1992) 84.