Rigid modules over preprojective algebras

Springer Science and Business Media LLC - Tập 165 - Trang 589-632 - 2006
Christof Geiß1, Bernard Leclerc2, Jan Schröer3
1Instituto de Matemáticas, UNAM, Ciudad Universitaria, Mexico D.F., Mexico
2Laboratoire LMNO, Université de Caen, Caen Cedex, France
3Mathematisches Institut, Universität Bonn, Bonn, Germany

Tóm tắt

Let Λ be a preprojective algebra of simply laced Dynkin type Δ. We study maximal rigid Λ-modules, their endomorphism algebras and a mutation operation on these modules. This leads to a representation-theoretic construction of the cluster algebra structure on the ring ℂ[N] of polynomial functions on a maximal unipotent subgroup N of a complex Lie group of type Δ. As an application we obtain that all cluster monomials of ℂ[N] belong to the dual semicanonical basis.

Tài liệu tham khảo

Auslander, M.: Selected works of Maurice Auslander, part 1, edited and with a foreword by I. Reiten, S. Smalø, O. Solberg, xxii+895pp. Providence, RI: American Mathematical Society 1999 Auslander, M., Platzeck, M.I., Reiten, I.: Coxeter functors without diagrams. Trans. Am. Math. Soc. 250, 1–46 (1979) Auslander, M., Reiten, I., Smalø, S.: Representation theory of Artin algebras. Corrected reprint of the 1995 original. Cambridge Studies in Advanced Mathematics, vol. 36, xiv+425pp. Cambridge: Cambridge University Press 1997 Berenstein, A., Fomin, S., Zelevinsky, A.: Cluster algebras III: Upper bounds and double Bruhat cells. Duke Math. J. 126, 1–52 (2005) Bongartz, K.: Algebras and quadratic forms. J. Lond. Math. Soc. 28, 461–469 (1983) Buan, A., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. 36 pp., accepted in Adv. Math., arXiv:math.RT/0402054 Buan, A., Marsh, R., Reiten, I.: Cluster-tilted algebras. Trans. Am. Math. Soc., to appear, 12 pp., arXiv:math.RT/0402075 Buan, A., Marsh, R., Reiten, I.: Cluster mutation via quiver representations, 23 pp., arXiv:math.RT/0412077 Butler, M.C.R., King, A.D.: Minimal resolutions of algebras. J. Algebra 212, 323–362 (1999) Caldero, P., Chapoton, F.: Cluster algebras as Hall algebras of quiver representations, 17 pp., accepted in Comment. Math. Helv., arXiv:math.RT/0410187 Caldero, P., Keller, B.: From triangulated categories to cluster algebras, 31 pp., arXiv:math.RT/0506018 Crawley-Boevey, W.: On the exceptional fibres of Kleinian singularities. Am. J. Math. 122, 1027–1037 (2000) Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15, 497–529 (2002) Gabriel, P.: Unzerlegbare Darstellungen. I (German). Manuscr. Math. 6, 71–103 (1972); correction, ibid 6, 309 (1972) Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras. Ann. Sci. Éc. Norm. Supér., IV. Sér. 38, 193–253 (2005) Geiß, C., Leclerc, B., Schröer, J.: Auslander algebras and initial seeds for cluster algebras, preprint 2005, 1–23, arXiv:math.RT/0506405 Geiß, C., Leclerc, B., Schröer, J.: Semicanonical bases and preprojective algebras II: A multiplication formula, preprint 2005, 1–16, arXiv:math.RT/0509483 Geiß, C., Schröer, J.: Extension-orthogonal components of preprojective varieties. Trans. Am. Math. Soc. 357, 1953–1962 (2005) Gelfand, I.M., Ponomarev, V.A.: Model algebras and representations of graphs (Russian). Funkts. Anal. Prilozh. 13, 1–12 (1979); English translation: Funct. Anal. Appl. 13 (1979), 157–166 (1979/1980) Happel, D., Ringel, C.M.: Tilted algebras. Trans. Am. Math. Soc. 274, 399–443 (1982) Happel, D.: On the derived category of a finite-dimensional algebra. Comment. Math. Helv. 62, 339–389 (1987) Happel, D., Unger, L.: Almost complete tilting modules. Proc. Am. Math. Soc. 107, 603–610 (1989) Igusa, K.: Notes on the no loops conjecture. J. Pure Appl. Algebra 69, 161–176 (1990) Iyama, O.: Finiteness of representation dimension. Proc. Am. Math. Soc. 131, 1011–1014 (2003) (electronic) Iyama, O.: Higher dimensional Auslander–Reiten theory on maximal orthogonal subcategories, 24 pp., arXiv:math.RT/0407052 Iyama, O.: Higher dimensional Auslander correspondence, 30 pp., arXiv:math.RT/0411631 Iyama, O.: Private communication. ICRA XI (Mexico), August 2004 Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005) (electronic) Lenzing, H.: Nilpotente Elemente in Ringen von endlicher globaler Dimension (German). Math. Z. 108, 313–324 (1969) Lusztig, G.: Quivers, perverse sheaves, and quantized enveloping algebras. J. Am. Math. Soc. 4, 365–421 (1991) Lusztig, G.: Constructible functions on the Steinberg variety. Adv. Math. 130, 287–310 (1997) Lusztig, G.: Semicanonical bases arising from enveloping algebras. Adv. Math. 151, 129–139 (2000) Riedtmann, C.: Degenerations for representations of quivers with relations. Ann. Sci. Éc. Norm. Supér., IV. Sér,. 19, 275–301 (1986) Riedtmann, C., Schofield, A.: On open orbits and their complements. J. Algebra 130, 388–411 (1990) Riedtmann, C., Schofield, A.: On a simplicial complex associated with tilting modules. Comment. Math. Helv. 66, 70–78 (1991) Ringel, C.M.: Tame algebras and integral quadratic forms. Lect. Notes Math.,vol. 1099, xiii+376 pp. Berlin: Springer 1984 Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101, 583–591 (1990) Ringel, C.M.: The preprojective algebra of a quiver. Algebras and modules, II (Geiranger 1996), pp. 467–480, CMS Conf. Proc., vol. 24. Providence, RI: Am. Math. Soc. 1998 Unger, L.: Schur modules over wild, finite-dimensional path algebras with three simple modules. J. Pure Appl. Algebra 64, 205–222 (1990)