Regional differences of convection structure of thunderclouds over the Tibetan Plateau

Atmospheric Research - Tập 278 - Trang 106338 - 2022
Xiushu Qie1,2,3, Lei Wei1,3, Kexin Zhu1,3, Kai Qie4, Chen Xu1, Zhuling Sun1, Rubin Jiang1,2, Hongbo Zhang1, Shanfeng Yuan1
1Key Laboratory of Middle Atmosphere and Global Environment Observation (LAGEO), Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing, China
3College of Earth and Planetary Science, University of Chinese Academy of Sciences, Beijing, China
4College of Atmospheric Sciences, Lanzhou University, Lanzhou, China

Tài liệu tham khảo

Albrecht, 2016, Where are the lightning hotspots on Earth?, Bull. Am. Meteorol. Soc., 97, 2051, 10.1175/BAMS-D-14-00193.1 Bian, 2020, Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon, Natl. Sci. Rev., 7, 516, 10.1093/nsr/nwaa005 Boccippio, 2002, Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor, part I: predicted diurnal variation, J. Atmos. Ocean. Technol., 19, 1318, 10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2 Buechler, 2014, Assessing the performance of the lightning imaging sensor (LIS) using deep convective clouds, Atmos. Res., 135–136, 397, 10.1016/j.atmosres.2012.09.008 Cecil, 2014, Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135, 404, 10.1016/j.atmosres.2012.06.028 Chen, 2015, Assessment of past, present and future environmental changes on the Tibetan Plateau, Chin. Sci. Bull., 60, 3025 Fu, 2006, Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau, Proc. Natl. Acad. Sci., 103, 5664, 10.1073/pnas.0601584103 Fu, 2006, Tower mast of precipitation over the central Tibetan Plateau summer, Geophys. Res. Lett., 33, L05802, 10.1029/2005GL024713 Houze, 2007, Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar, Q. J. R. Meteorol. Soc., 133, 1389, 10.1002/qj.106 Hu, 2017, The regional differences of Tibetan convective systems in boreal summer, J. Geophys. Res. Atmos., 122, 7289, 10.1002/2017JD026681 Kumar, 2012, The spatiotemporal variability of lightning activity in the Himalayan foothills, J. Geophys. Res. Atmos., 117, D24201 Li, 2020, Lightning activity and its association with surface thermodynamics over the Tibetan Plateau, Atmos. Res., 245, 10.1016/j.atmosres.2020.105118 Li, 2021, Regionally different precipitation trends over the Tibetan Plateau in the warming context: a Perspective of the Tibetan Plateau vortices, Geophys. Res. Lett., 48, 10.1029/2020GL091680 Liu, 2008, A cloud and precipitation feature database from nine years of TRMM observations, J. Appl. Meteorol. Climatol., 47, 2712, 10.1175/2008JAMC1890.1 Lu, 2015, Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations, J. Clim., 28, 1707, 10.1175/JCLI-D-14-00303.1 Luo, 2011, Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data, J. Clim., 24, 2164, 10.1175/2010JCLI4032.1 Ma, 2021, Spatiotemporal Lightning activity Detected by WWLLN over the Tibetan Plateau and its Comparison with LIS Lightning, J. Atmos. Ocean. Tech., 38, 511, 10.1175/JTECH-D-20-0080.1 Nesbitt, 2000, A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations, J. Clim., 13, 4087, 10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2 Park, 2007, Transport above the Asian summer monsoon anticyclone inferred from Aura microwave limb sounder tracers, J. Geophys. Res. Atmos., 112, D16309, 10.1029/2006JD008294 Qie, 2020, Regional trends of lightning activity in the tropics and subtropics, Atmos. Res., 242, 10.1016/j.atmosres.2020.104960 Qie, 2021, Increasing trend of lightning activity in the South Asia region, Sci. Bull., 66, 78, 10.1016/j.scib.2020.08.033 Qie, 2003, Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor, J. Geophys. Res. Atmos., 108, 4551, 10.1029/2002JD003304 Qie, 2005, The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau, Geophys. Res. Lett., 32, L05814, 10.1029/2004GL022162 Qie, 2014, Comprehensive pattern of deep convective systems over the Tibetan Plateau-south Asian monsoon region based on TRMM data, J. Clim., 27, 6612, 10.1175/JCLI-D-14-00076.1 Rabbani, 2022, Lightning forecasting in Bangladesh based on the lightning potential index and the electric potential, Atmos. Res., 267, 10.1016/j.atmosres.2021.105973 Saunders, 1998, Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions, J. Geophys. Res. Atmos., 103, 13949, 10.1029/97JD02644 Toumi, 2004, Seasonal variation of lightning on the Tibetan Plateau: a Spring anomaly?, Geophys. Res. Lett., 31, L04115, 10.1029/2003GL018930 Wang, 2008, Tibetan Plateau warming and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702, 10.1029/2008GL034330 Wu, 2015, Tibetan Plateau climate dynamics: recent research progress and outlook, Natl. Sci. Rev., 2, 100, 10.1093/nsr/nwu045 Wu, 2013, Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region, China Earth Sci., 56, 843, 10.1007/s11430-012-4551-8 Wu, 2020, Geographical distribution of extreme deep and intense convective storms on Earth, Atmos. Res., 235, 10.1016/j.atmosres.2019.104789 Xu, 2022, Lightning climatology across the Chinese continent from 2010 to 2020, Atmos. Res., 275, 10.1016/j.atmosres.2022.106251 Xu, 2013, Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM, Mon. Weather Rev., 141, 1577, 10.1175/MWR-D-12-00177.1 Yan, 2019, Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions, Adv. Atmos. Sci., 36, 1, 10.1007/s00376-019-8229-4 Yanai, 1992, Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer monsoon, J. meteorol. Soc. Japan., 70, 319, 10.2151/jmsj1965.70.1B_319 Yang, 2014, Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review, Glob. Planet. Chang., 112, 79, 10.1016/j.gloplacha.2013.12.001 Yao, 2019, Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis, Bull. Am. Meteorol. Soc., 100, 423, 10.1175/BAMS-D-17-0057.1 Ye, 1979 Zhang, 2004, Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau, Sci. China Ser. D Earth Sci., 47, 108, 10.1007/BF02880986 Zhao, 2019, The Tibetan Plateau surface- atmosphere coupling system and its weather and climate effects: the Third Tibetan Plateau atmospheric science experiment, J. Meteor. Res., 33, 775, 10.1007/s13351-019-8602-3 Zheng, 2021, New insights into the correlation between lightning flash rate and size in thunderstorms, Geophys. Res. Lett., 48, 10.1029/2021GL096085 Zipser, 2006, Where are the most intense thunderstorms on Earth?, Bull. Am. Meteorol. Soc., 87, 1057, 10.1175/BAMS-87-8-1057