Regional differences of convection structure of thunderclouds over the Tibetan Plateau
Tài liệu tham khảo
Albrecht, 2016, Where are the lightning hotspots on Earth?, Bull. Am. Meteorol. Soc., 97, 2051, 10.1175/BAMS-D-14-00193.1
Bian, 2020, Transport of Asian surface pollutants to the global stratosphere from the Tibetan Plateau region during the Asian summer monsoon, Natl. Sci. Rev., 7, 516, 10.1093/nsr/nwaa005
Boccippio, 2002, Performance assessment of the Optical Transient Detector and Lightning Imaging Sensor, part I: predicted diurnal variation, J. Atmos. Ocean. Technol., 19, 1318, 10.1175/1520-0426(2002)019<1318:PAOTOT>2.0.CO;2
Buechler, 2014, Assessing the performance of the lightning imaging sensor (LIS) using deep convective clouds, Atmos. Res., 135–136, 397, 10.1016/j.atmosres.2012.09.008
Cecil, 2014, Gridded lightning climatology from TRMM-LIS and OTD: Dataset description, Atmos. Res., 135, 404, 10.1016/j.atmosres.2012.06.028
Chen, 2015, Assessment of past, present and future environmental changes on the Tibetan Plateau, Chin. Sci. Bull., 60, 3025
Fu, 2006, Short circuit of water vapor and polluted air to the global stratosphere by convective transport over the Tibetan Plateau, Proc. Natl. Acad. Sci., 103, 5664, 10.1073/pnas.0601584103
Fu, 2006, Tower mast of precipitation over the central Tibetan Plateau summer, Geophys. Res. Lett., 33, L05802, 10.1029/2005GL024713
Houze, 2007, Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar, Q. J. R. Meteorol. Soc., 133, 1389, 10.1002/qj.106
Hu, 2017, The regional differences of Tibetan convective systems in boreal summer, J. Geophys. Res. Atmos., 122, 7289, 10.1002/2017JD026681
Kumar, 2012, The spatiotemporal variability of lightning activity in the Himalayan foothills, J. Geophys. Res. Atmos., 117, D24201
Li, 2020, Lightning activity and its association with surface thermodynamics over the Tibetan Plateau, Atmos. Res., 245, 10.1016/j.atmosres.2020.105118
Li, 2021, Regionally different precipitation trends over the Tibetan Plateau in the warming context: a Perspective of the Tibetan Plateau vortices, Geophys. Res. Lett., 48, 10.1029/2020GL091680
Liu, 2008, A cloud and precipitation feature database from nine years of TRMM observations, J. Appl. Meteorol. Climatol., 47, 2712, 10.1175/2008JAMC1890.1
Lu, 2015, Detecting long-term trends in precipitable water over the Tibetan Plateau by synthesis of station and MODIS observations, J. Clim., 28, 1707, 10.1175/JCLI-D-14-00303.1
Luo, 2011, Intercomparison of deep convection over the Tibetan Plateau-Asian monsoon region and subtropical North America in boreal summer using CloudSat/CALIPSO data, J. Clim., 24, 2164, 10.1175/2010JCLI4032.1
Ma, 2021, Spatiotemporal Lightning activity Detected by WWLLN over the Tibetan Plateau and its Comparison with LIS Lightning, J. Atmos. Ocean. Tech., 38, 511, 10.1175/JTECH-D-20-0080.1
Nesbitt, 2000, A census of precipitation features in the tropics using TRMM: radar, ice scattering, and lightning observations, J. Clim., 13, 4087, 10.1175/1520-0442(2000)013<4087:ACOPFI>2.0.CO;2
Park, 2007, Transport above the Asian summer monsoon anticyclone inferred from Aura microwave limb sounder tracers, J. Geophys. Res. Atmos., 112, D16309, 10.1029/2006JD008294
Qie, 2020, Regional trends of lightning activity in the tropics and subtropics, Atmos. Res., 242, 10.1016/j.atmosres.2020.104960
Qie, 2021, Increasing trend of lightning activity in the South Asia region, Sci. Bull., 66, 78, 10.1016/j.scib.2020.08.033
Qie, 2003, Lightning activities on the Tibetan Plateau as observed by the lightning imaging sensor, J. Geophys. Res. Atmos., 108, 4551, 10.1029/2002JD003304
Qie, 2005, The lower positive charge center and its effect on lightning discharges on the Tibetan Plateau, Geophys. Res. Lett., 32, L05814, 10.1029/2004GL022162
Qie, 2014, Comprehensive pattern of deep convective systems over the Tibetan Plateau-south Asian monsoon region based on TRMM data, J. Clim., 27, 6612, 10.1175/JCLI-D-14-00076.1
Rabbani, 2022, Lightning forecasting in Bangladesh based on the lightning potential index and the electric potential, Atmos. Res., 267, 10.1016/j.atmosres.2021.105973
Saunders, 1998, Laboratory studies of the influence of the rime accretion rate on charge transfer during crystal/graupel collisions, J. Geophys. Res. Atmos., 103, 13949, 10.1029/97JD02644
Toumi, 2004, Seasonal variation of lightning on the Tibetan Plateau: a Spring anomaly?, Geophys. Res. Lett., 31, L04115, 10.1029/2003GL018930
Wang, 2008, Tibetan Plateau warming and precipitation changes in East Asia, Geophys. Res. Lett., 35, L14702, 10.1029/2008GL034330
Wu, 2015, Tibetan Plateau climate dynamics: recent research progress and outlook, Natl. Sci. Rev., 2, 100, 10.1093/nsr/nwu045
Wu, 2013, Regional distribution and diurnal variation of deep convective systems over the Asian monsoon region, China Earth Sci., 56, 843, 10.1007/s11430-012-4551-8
Wu, 2020, Geographical distribution of extreme deep and intense convective storms on Earth, Atmos. Res., 235, 10.1016/j.atmosres.2019.104789
Xu, 2022, Lightning climatology across the Chinese continent from 2010 to 2020, Atmos. Res., 275, 10.1016/j.atmosres.2022.106251
Xu, 2013, Precipitation and convective characteristics of summer deep convection over East Asia observed by TRMM, Mon. Weather Rev., 141, 1577, 10.1175/MWR-D-12-00177.1
Yan, 2019, Vertical structures of convective and stratiform clouds in boreal summer over the Tibetan Plateau and its neighboring regions, Adv. Atmos. Sci., 36, 1, 10.1007/s00376-019-8229-4
Yanai, 1992, Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian Summer monsoon, J. meteorol. Soc. Japan., 70, 319, 10.2151/jmsj1965.70.1B_319
Yang, 2014, Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review, Glob. Planet. Chang., 112, 79, 10.1016/j.gloplacha.2013.12.001
Yao, 2019, Recent third pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis, Bull. Am. Meteorol. Soc., 100, 423, 10.1175/BAMS-D-17-0057.1
Ye, 1979
Zhang, 2004, Study of charge structure and radiation characteristic of intracloud discharge in thunderstorms of Qinghai-Tibet Plateau, Sci. China Ser. D Earth Sci., 47, 108, 10.1007/BF02880986
Zhao, 2019, The Tibetan Plateau surface- atmosphere coupling system and its weather and climate effects: the Third Tibetan Plateau atmospheric science experiment, J. Meteor. Res., 33, 775, 10.1007/s13351-019-8602-3
Zheng, 2021, New insights into the correlation between lightning flash rate and size in thunderstorms, Geophys. Res. Lett., 48, 10.1029/2021GL096085
Zipser, 2006, Where are the most intense thunderstorms on Earth?, Bull. Am. Meteorol. Soc., 87, 1057, 10.1175/BAMS-87-8-1057