Local analysis near a folded saddle-node singularity

Journal of Differential Equations - Tập 248 - Trang 2841-2888 - 2010
Martin Krupa1, Martin Wechselberger2
1Department of Medical Physics and Biophysics, Radboud Universiteit Nijmegen, BEG 126, Geert Grooteplein 21, NL 6525 EZ Nijmegen, Netherlands
2School of Mathematics and Statistics F07, University of Sydney, NSW 2006, Australia

Tài liệu tham khảo

Baer, 1986, Singular Hopf bifurcation to relaxation oscillations, SIAM J. Appl. Math., 46, 721, 10.1137/0146047 Baer, 1992, Singular Hopf bifurcation to relaxation oscillations II, SIAM J. Appl. Math., 52, 1651, 10.1137/0152095 Benoît, 1983, Systèmes lents-rapides dans R3 et leur canards, Astérisque, 109/110, 159 Benoît, 2001, Perturbation singuliére en dimension troi : Canards en un point pseudo-singulier noeud, Bull. Soc. Math. France, 129, 91, 10.24033/bsmf.2387 Bold, 2003, The forced van der Pol equation II: Canards in the reduced system, SIAM J. Appl. Dyn. Syst., 2, 570, 10.1137/S1111111102419130 Braaksma, 1998, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8, 457, 10.1007/s003329900058 Brøns, 2006, Mixed mode oscillations due to the generalized canard phenomenon, vol. 49, 39 Desroches, 2008, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7, 1131, 10.1137/070708810 Diener, 1984, The canard unchained or how fast/slow dynamical systems bifurcate, Math. Intelligencer, 6, 38, 10.1007/BF03024127 Dumortier, 1996, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 557 Ermentrout, 2009, Canards, clusters and synchronization in a weakly coupled interneuron model, SIAM J. Appl. Dyn. Syst., 8, 253, 10.1137/080724010 Fenichel, 1979, Geometric singular perturbation theory, J. Differential Equations, 31, 53, 10.1016/0022-0396(79)90152-9 Guckenheimer, 2008, Return maps of folded nodes and folded saddle-nodes, Chaos, 18, 015108, 10.1063/1.2790372 Guckenheimer, 2008, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Syst., 7, 1355, 10.1137/080718528 Guckenheimer, 2005, Canards at folded nodes, Mosc. Math. J., 5, 91, 10.17323/1609-4514-2005-5-1-91-103 Guckenheimer, 1997, Bifurcation, bursting, and spike frequency adaptation, J. Comput. Neurosci., 4, 257, 10.1023/A:1008871803040 Guckenheimer, 2005, Chaotic attractors of relaxation oscillators, Nonlinearity, 19, 701, 10.1088/0951-7715/19/3/009 Guckenheimer, 2000, Asymptotic analysis of subcritical Hopf-homoclinic bifurcation, Phys. D, 139, 195, 10.1016/S0167-2789(99)00225-0 M. Haines, Geometric analysis of delayed bifurcations, PhD thesis, Boston University, MA, USA, 2000 Hille, 1976, Ordinary Differential Equations in the Complex Domain Hodgkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London), 117, 500, 10.1113/jphysiol.1952.sp004764 Jones, 1995, Geometric singular perturbation theory, vol. 1609, 44 Krupa, 2008, MMOs in three time scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7, 361, 10.1137/070688912 Krupa, 2001, Relaxation oscillations and canard explosion, J. Differential Equations, 174, 312, 10.1006/jdeq.2000.3929 Krupa, 2001, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 286, 10.1137/S0036141099360919 Milik, 1998, Multiple time scales and canards in a chemical oscillator, vol. 122, 117 Milik, 1998, Geometry of mixed-mode oscillations in the 3d autocatalator, Internat. J. Bifur. Chaos, 8, 505, 10.1142/S0218127498000322 Neishtadt, 1987, Persistence of stability loss for dynamic bifurcations. I, Differ. Equ., 23, 1385 Neishtadt, 1988, Persistence of stability loss for dynamic bifurcations. II, Differ. Equ., 24, 171 Rotstein, 2008, Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst., 7, 1582, 10.1137/070699093 Rubin, 2007, Giant squid-hidden canard: The 3D geometry of the Hodgkin–Huxley model, Biol. Cybernet., 97, 5, 10.1007/s00422-007-0153-5 Rubin, 2008, The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple time scales, Chaos, 18, 015105, 10.1063/1.2789564 Shishkova, 1973, Examination of a system of differential equations with a small parameter in the highest derivatives, Dokl. Akad. Nauk SSSR, 209, 576 Su, 1998, Delay of bifurcation phenomena and their analyses, vol. 122, 203 Szmolyan, 2001, Canards in R3, J. Differential Equations, 177, 419, 10.1006/jdeq.2001.4001 Szmolyan, 2004, Relaxation oscillations in R3, J. Differential Equations, 200, 69, 10.1016/j.jde.2003.09.010 Takens, 1976, Constrained equations: A study of implicit differential equations and their discontinuous solutions, vol. 525, 134 Wallet, 1986, Entrée-sorte dans un tourbillon, Ann. Inst. Fourier (Grenoble), 36, 157, 10.5802/aif.1072 M. Wechselberger, Singularly perturbed folds and canards in R3, PhD thesis, Vienna University of Technology, Vienna, Austria, 1998 Wechselberger, 2002, Extending Melnikov-theory to invariant manifolds on noncompact domains, Dyn. Syst., 17, 215, 10.1080/14689360210136901 Wechselberger, 2005, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4, 101, 10.1137/030601995