Local analysis near a folded saddle-node singularity
Tài liệu tham khảo
Baer, 1986, Singular Hopf bifurcation to relaxation oscillations, SIAM J. Appl. Math., 46, 721, 10.1137/0146047
Baer, 1992, Singular Hopf bifurcation to relaxation oscillations II, SIAM J. Appl. Math., 52, 1651, 10.1137/0152095
Benoît, 1983, Systèmes lents-rapides dans R3 et leur canards, Astérisque, 109/110, 159
Benoît, 2001, Perturbation singuliére en dimension troi : Canards en un point pseudo-singulier noeud, Bull. Soc. Math. France, 129, 91, 10.24033/bsmf.2387
Bold, 2003, The forced van der Pol equation II: Canards in the reduced system, SIAM J. Appl. Dyn. Syst., 2, 570, 10.1137/S1111111102419130
Braaksma, 1998, Singular Hopf bifurcation in systems with fast and slow variables, J. Nonlinear Sci., 8, 457, 10.1007/s003329900058
Brøns, 2006, Mixed mode oscillations due to the generalized canard phenomenon, vol. 49, 39
Desroches, 2008, The geometry of slow manifolds near a folded node, SIAM J. Appl. Dyn. Syst., 7, 1131, 10.1137/070708810
Diener, 1984, The canard unchained or how fast/slow dynamical systems bifurcate, Math. Intelligencer, 6, 38, 10.1007/BF03024127
Dumortier, 1996, Canard cycles and center manifolds, Mem. Amer. Math. Soc., 557
Ermentrout, 2009, Canards, clusters and synchronization in a weakly coupled interneuron model, SIAM J. Appl. Dyn. Syst., 8, 253, 10.1137/080724010
Fenichel, 1979, Geometric singular perturbation theory, J. Differential Equations, 31, 53, 10.1016/0022-0396(79)90152-9
Guckenheimer, 2008, Return maps of folded nodes and folded saddle-nodes, Chaos, 18, 015108, 10.1063/1.2790372
Guckenheimer, 2008, Singular Hopf bifurcation in systems with two slow variables, SIAM J. Appl. Dyn. Syst., 7, 1355, 10.1137/080718528
Guckenheimer, 2005, Canards at folded nodes, Mosc. Math. J., 5, 91, 10.17323/1609-4514-2005-5-1-91-103
Guckenheimer, 1997, Bifurcation, bursting, and spike frequency adaptation, J. Comput. Neurosci., 4, 257, 10.1023/A:1008871803040
Guckenheimer, 2005, Chaotic attractors of relaxation oscillators, Nonlinearity, 19, 701, 10.1088/0951-7715/19/3/009
Guckenheimer, 2000, Asymptotic analysis of subcritical Hopf-homoclinic bifurcation, Phys. D, 139, 195, 10.1016/S0167-2789(99)00225-0
M. Haines, Geometric analysis of delayed bifurcations, PhD thesis, Boston University, MA, USA, 2000
Hille, 1976, Ordinary Differential Equations in the Complex Domain
Hodgkin, 1952, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physiol. (London), 117, 500, 10.1113/jphysiol.1952.sp004764
Jones, 1995, Geometric singular perturbation theory, vol. 1609, 44
Krupa, 2008, MMOs in three time scale systems: A prototypical example, SIAM J. Appl. Dyn. Syst., 7, 361, 10.1137/070688912
Krupa, 2001, Relaxation oscillations and canard explosion, J. Differential Equations, 174, 312, 10.1006/jdeq.2000.3929
Krupa, 2001, Extending geometric singular perturbation theory to nonhyperbolic points – fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 286, 10.1137/S0036141099360919
Milik, 1998, Multiple time scales and canards in a chemical oscillator, vol. 122, 117
Milik, 1998, Geometry of mixed-mode oscillations in the 3d autocatalator, Internat. J. Bifur. Chaos, 8, 505, 10.1142/S0218127498000322
Neishtadt, 1987, Persistence of stability loss for dynamic bifurcations. I, Differ. Equ., 23, 1385
Neishtadt, 1988, Persistence of stability loss for dynamic bifurcations. II, Differ. Equ., 24, 171
Rotstein, 2008, Canard induced mixed-mode oscillations in a medial entorhinal cortex layer II stellate cell model, SIAM J. Appl. Dyn. Syst., 7, 1582, 10.1137/070699093
Rubin, 2007, Giant squid-hidden canard: The 3D geometry of the Hodgkin–Huxley model, Biol. Cybernet., 97, 5, 10.1007/s00422-007-0153-5
Rubin, 2008, The selection of mixed-mode oscillations in a Hodgkin–Huxley model with multiple time scales, Chaos, 18, 015105, 10.1063/1.2789564
Shishkova, 1973, Examination of a system of differential equations with a small parameter in the highest derivatives, Dokl. Akad. Nauk SSSR, 209, 576
Su, 1998, Delay of bifurcation phenomena and their analyses, vol. 122, 203
Szmolyan, 2001, Canards in R3, J. Differential Equations, 177, 419, 10.1006/jdeq.2001.4001
Szmolyan, 2004, Relaxation oscillations in R3, J. Differential Equations, 200, 69, 10.1016/j.jde.2003.09.010
Takens, 1976, Constrained equations: A study of implicit differential equations and their discontinuous solutions, vol. 525, 134
Wallet, 1986, Entrée-sorte dans un tourbillon, Ann. Inst. Fourier (Grenoble), 36, 157, 10.5802/aif.1072
M. Wechselberger, Singularly perturbed folds and canards in R3, PhD thesis, Vienna University of Technology, Vienna, Austria, 1998
Wechselberger, 2002, Extending Melnikov-theory to invariant manifolds on noncompact domains, Dyn. Syst., 17, 215, 10.1080/14689360210136901
Wechselberger, 2005, Existence and bifurcation of canards in R3 in the case of a folded node, SIAM J. Appl. Dyn. Syst., 4, 101, 10.1137/030601995