Design of composite structures with programmable elastic responses under finite deformations
Tài liệu tham khảo
Armijo, 1966, Minimization of functions having Lipschitz continuous first partial derivatives., Pacific J. Math., 16, 1, 10.2140/pjm.1966.16.1
Bandyopadhyay, 2018, Additive manufacturing of multi-material structures, Mater. Sci. Eng. R, 129, 1, 10.1016/j.mser.2018.04.001
Bendsøe, 1989, Optimal shape design as a material distribution problem, Struct. Optim., 1, 193, 10.1007/BF01650949
Bendsøe, 1999, Material interpolation schemes in topology optimization, Arch. Appl. Mech., 69, 635
Bendsøe, 2003
Bonnecaze, 2003, Systematic design of phononic band-gap materials and structures by topology optimization, Phil. Trans. R. Soc. A, 361, 1001, 10.1098/rsta.2003.1177
Bruggi, 2008, On an alternative approach to stress constraints relaxation in topology optimization, Struct. Multidiscip. Optim., 36, 125, 10.1007/s00158-007-0203-6
Bruns, 2004, Toward the topology design of mechanisms that exhibit snap-through behavior, Comput. Methods Appl. Mech. Engrg., 193, 3973, 10.1016/j.cma.2004.02.017
Bruns, 2001, Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190, 3443, 10.1016/S0045-7825(00)00278-4
Cheng, 1997, ϵ-Relaxed approach in structural topology optimization, Struct. Optim., 13, 258, 10.1007/BF01197454
Cheng, 1992, Study on topology optimization with stress constraints, Eng. Optim., 20, 129, 10.1080/03052159208941276
da Silva, 2020, Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity, Comput. Methods Appl. Mech. Engrg., 365, 10.1016/j.cma.2020.112972
Dobson, 1999, Maximizing band gaps in two-dimensional photonic crystals, SIAM J. Appl. Math., 59, 2108, 10.1137/S0036139998338455
Dudte, 2016, Programming curvature using origami tessellations, Nature Mater., 15, 583, 10.1038/nmat4540
Duysinx, 1998
Feng, 2006, Finite deformations of Ogden’s materials under impact loading, Int. J. Non-Linear Mech., 41, 575, 10.1016/j.ijnonlinmec.2006.02.003
Fu, 2019, Programmable granular metamaterials for reusable energy absorption, Adv. Funct. Mater., 29
Gorissen, 2020, Inflatable soft jumper inspired by shell snapping, Sci. Robot., 5, 10.1126/scirobotics.abb1967
Jang, 2015, Soft network composite materials with deterministic and bio-inspired designs, Nature Commun., 6, 6566, 10.1038/ncomms7566
Lee, 2020, Enforcing a force–displacement curve of a nonlinear structure using topology optimization with slope constraints, Appl. Sci., 10, 2676, 10.3390/app10082676
Ogden, 1982, Elastic deformations of rubberlike solids, 499
Ogden, 1997
Olhoff, 1989, Multicriterion structural optimization via bound formulation and mathematical programming, Struct. Optim., 1, 11, 10.1007/BF01743805
Overvelde, 2015, Amplifying the response of soft actuators by harnessing snap-through instabilities, Proc. Natl. Acad. Sci., 112, 10863, 10.1073/pnas.1504947112
Poulain, 2017, Damage in elastomers: nucleation and growth of cavities, micro-cracks, and macro-cracks, Int. J. Fract., 205, 1, 10.1007/s10704-016-0176-9
Rafsanjani, 2015, Snapping mechanical metamaterials under tension, Adv. Mater., 27, 5931, 10.1002/adma.201502809
Russomanno, 2017, A pneu shape display: Physical buttons with programmable touch response, 641
Shan, 2015, Multistable architected materials for trapping elastic strain energy, Adv. Mater., 27, 4296, 10.1002/adma.201501708
Sigmund, 1994, Materials with prescribed constitutive parameters: An inverse homogenization problem, Int. J. Solids Struct., 31, 2313, 10.1016/0020-7683(94)90154-6
Sigmund, 1995, Tailoring materials with prescribed elastic properties, Mech. Mater., 20, 351, 10.1016/0167-6636(94)00069-7
Sigmund, 2001, Design of multiphysics actuators using topology optimization – Part II: Two-material structures, Comput. Methods Appl. Mech. Engrg., 190, 6605, 10.1016/S0045-7825(01)00252-3
Sigmund, 2007, Morphology-based black and white filters for topology optimization, Struct. Multidiscip. Optim., 33, 401, 10.1007/s00158-006-0087-x
Sigmund, 1997, Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037, 10.1016/S0022-5096(96)00114-7
Sigmund, 1998, On the design of 1–3 piezocomposites using topology optimization, J. Mater. Res., 13, 1038, 10.1557/JMR.1998.0145
Svanberg, 1987, The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359, 10.1002/nme.1620240207
Takezawa, 2017, Design methodology for porous composites with tunable thermal expansion produced by multi-material topology optimization and additive manufacturing, Composites B, 131, 21, 10.1016/j.compositesb.2017.07.054
Wang, 2018, Systematic design of 3D auxetic lattice materials with programmable Poisson’s ratio for finite strains, J. Mech. Phys. Solids, 114, 303, 10.1016/j.jmps.2018.01.013
Wang, 2011, On projection methods, convergence and robust formulations in topology optimization, Struct. Multidiscip. Optim., 43, 767, 10.1007/s00158-010-0602-y
Wang, 2014, Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Engrg., 276, 453, 10.1016/j.cma.2014.03.021
Wang, 2015, Patterning cellular alignment through stretching hydrogels with programmable strain gradients, ACS Appl. Mater. Interfaces, 7, 15088, 10.1021/acsami.5b04450
Wang, 2014, Design of materials with prescribed nonlinear properties, J. Mech. Phys. Solids, 69, 156, 10.1016/j.jmps.2014.05.003
Zhang, 2020, Adaptive multi-material topology optimization with hyperelastic materials under large deformations: A virtual element approach, Comput. Methods Appl. Mech. Engrg., 370, 10.1016/j.cma.2020.112976
Zhang, 2019, Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization, Comput. Methods Appl. Mech. Engrg., 356, 490, 10.1016/j.cma.2019.07.027
Zhang, 2018, Multi-material topology optimization with multiple volume constraints: a general approach applied to ground structures with material nonlinearity, Struct. Multidiscip. Optim., 57, 161, 10.1007/s00158-017-1768-3
Zhang, 2017, Material nonlinear topology optimization using the ground structure method with a discrete filtering scheme, Struct. Multidiscip. Optim., 55, 2045, 10.1007/s00158-016-1627-7
Zienkiewicz, 2014