Multigrid based total variation image registration

Springer Science and Business Media LLC - Tập 11 - Trang 101-113 - 2007
Claudia Frohn-Schauf1, Stefan Henn1, Kristian Witsch1
1Mathematisches Institut, Heinrich Heine Universität Düsseldorf, Düsseldorf, Germany

Tóm tắt

We consider the image registration problem to find a reasonable displacement field, such that a transformed template image becomes similar to a so-called reference image. The minimization of the similarity measure (exemplarily based on the gray-value difference) yields a nonlinear ill-posed inverse problem. The necessary regularization is done by replacing the ill-conditioned Hessian by a multidimensional total variation $$(\mathcal{TV})$$ norm. This allows steep gradients and discontinuities in the displacement field in contrast to the common approach by elastic regularization which leads to globally smooth displacement fields. We propose and investigate a multigrid algorithm as inner iteration for $$\mathcal{TV}$$ registration. As we use Neumann boundary conditions which lead to singular systems, a special treatment before and during the FAS multigrid algorithm is required, e.g. the introduction and solution of an augmented system. We describe the necessary modifications for the multigrid algorithm and present convergence results as well as first registration experiments demonstrating the capabilities of the proposed approach.

Tài liệu tham khảo

Acar R. and Vogel C. (1994). Analysis of bounded variation penalty method. Inverse Prob. 10: 1217–1229 Amunts, K., Zilles, K.: Advances in cytoarchitectonic mapping of the human cerebral cortex. In: Neuroimaging Clinics of North America: Anatomic Basis of Functional Magnetic Resonance Imaging, Naidich, T., Yousry, T., Mathews, V. (eds.) Harcourt, Philadelphia: pp. 151–169 (2001) Aubert G., Deriche R. and Kornprobst P. (1999). Computing optical flow via variational techniques. SIAM J. Appl. Math. 60(1): 156–182 Bajcsy R. and Kovacic S. (1989). Multiresolution elastic matching. Comput. Vis. 46: 1–21 Barry, A.: Seeking signs of intelligence in the theory of control, SIAM NEWS, 30(3), (1997) Brandt, A.: Multigrid techniques: guide with applications to fluid dynamics. GMD-Studie Nr. 85, GMD, St. Augustin (1984) Brox, T., Welk, M., Steidl, G., Weickert, J.: Equivalence results for TV diffusion and TV regularization. In: Scale Space 2003. Griffin, L., Lillholm, M. (eds.) LNCS, vol. 2695 Springer, Heidelberg, pp. 86–100 (2003) Chambolle A. and Lions P.-L. (1995). Image recovery via total variation minimization and related problems. Numer. Math. 76: 167–188 Chan, T., Chan, R., Zhou, H.: A continuation method for total variation denoising problems, In: Proceedings of the SPIE Conference on Advanced Signal Processing Algorithms (1995) Chan, T., Esedoglu, S., Park, F., Yip, A.: Recent developments in total variation image restoration. In: Mathematical Models in Computer Vision: The Handbook (2005) Chan T., Golub G. and Mulet P. (1999). A nonlinear primal-dual method for total variation-based image restoration. SIAM J. Sci. Comput. 20(6): 1964–1977 Chan T., Marquina A. and Mulet P. (2000). High-order total variation-based image restoration. SIAM J. Sci. Comput. 22(2): 503–516 Chan T. and Wong -K. (1998). Total variation blind deconvolution. IEEE Trans. Image Proc. 7(3): 370–375 Christensen G., Miller M., Vannier M. and Grenander U. (1996). Individualizing neuroanatomical atlases using a massively parallel computer. IEEE Comput. 29(1): 32–38 Clarenz, U., Droske, M., Henn, S., Rumpf, M., Witsch, K.: Computational methods for nonlinear image registration. In: [38] Sc:06, pp. 81–101 (2006) Courant, R.: Calculus of Variations. Courant Institute of Mathematical Sciences, New York (1962) Dobson D.C. and Vogel C.R. (1997). Convergence of an iterative method for total variation denoising. SIAM J. Numer. Anal. 34: 1779–1791 Fitzpatrick, J., Hill, L., Maurer, C.: Image registration, In: Handbook of Medical Imaging, Volume 2: Medical Image Processing and Analysis, SPIE 2000, Sonka, M., Fitzpatrick, J. (eds.) pp. 447–513 (2000) Frohn-Schauf, C., Henn, S., Hömke, L., Witsch, K.: Total variation based image registration. In: Proceedings of the International Conference on PDE-Based Image Processing and Related Inverse Problems. Tai, X.-C., Lie, K.-A., Chan, T.F., Osher, S. (eds.) Mathematics and Visualization. Springer, Heidelberg pp. 305–323 (2006) Frohn-Schauf, C., Henn, S., Witsch, K.: Nonlinear multigrid methods for total variation image denoising, Comput. Visualizat. Sci. 7 199–206 (2004) Hackbusch W. (1992). Elliptic Differential Equations. Theory and Numerical Treatment. Springer Series in Computational Mathematics, vol 18. Springer, Heidelberg Hadamard J. (1923). Lectures on the Cauchy Problem in Linear Partial Differential Equations. Dover Publishing, New York Henn S. (2003). A Levenberg-Marquardt scheme for nonlinear image registration. BIT Numer. Math. 43(4): 743–759 Henn S. (2006). A translation and rotation invariant Gauss–Newton like scheme for image registration. BIT Numer. Math. 46: 325–344 Henn, S., Hömke, L., Witsch, K.: A generalized image registration framework using incomplete image information—with applications to lesion mapping, In [38] Sc:06, pp. 3–26 (2006) Henn S. and Witsch K. (2000). A multigrid approach for minimizing a nonlinear functional for digital image matching. Computing 64(4): 339–348 Henn S. and Witsch K. (2001). Iterative multigrid regularization techniques for image matching. SIAM J. Sci. Comput. (SISC) 23(4): 1077–1093 Henn S. and Witsch K. (2004). Multi-modal image registration using a variational approach. SIAM J. Sci. Comput. (SISC) 25(4): 1429–1447 Hinterberger W., Schnörr C. and Weickert J. (2002). Analysis of optical flow models in the framework of calculus of variations. Numer. Funct. Analy. Optimi. 23: 69–82 Horn B. and Schunck B. (1981). Determining optical flow, Artif. Intell. 17: 185–203 Li Y. and Santosa F. (1996). A computational algorithm for minimizing total variation in image restoration. IEEE Trans. Image Proc. 5: 987–995 Maintz J. and Viergever M. (1996). A survey of medical image registration. Med. Image Analy. 2(1): 1–36 Modersitzki J. (2003). Numerical Methods for Image Registration. Oxford Science Publications, Oxford Nagel H.-H. and Enkelmann W. (1986). An investigation of smoothness constraints for the estimation of displacement vector fields from images sequences. IEEE Transa. Pattern Anal. Mach. Intell. 8: 565–593 Osher S., Solé A. and Vese L. (2003). Image decomposition and restoration using total variation minimization and the H 1. Multiscale Model. Simulat. 1: 349–370 Rudin L., Osher S. and Fatemi E. (1992). Nonlinear total variation-based noise removal algorithms. Physica D 60: 259–268 Schormann T. and Zilles K. (1998). Three-dimensional linear and nonlinear transformations: an integration of light microscopical and MRI data. Human Brain Mapping, 6(5–6): 339–347 Scherzer, O.: Computational methods for nonlinear image registration. Mathematical Method for Registration and Applications to Medical Imaging, vol. 10. European Consortium for Mathematics in Industry (ECMI) (2006) Stüben K. and Trottenberg U. (1982). Multigrid methods: Fundamental algorithms, model problem analysis and applications. Lecture Notes Math. 960: 1–176 Thompson, P., Toga, A.: Anatomically driven strategies for high-dimensional brain image registration and pathology. Brain Warping. Academic Press, Newyork, pp. 311–336. (1998) Tikhonov A.N. and Arsenin V.Y. (1977). Solution of Ill-Posed Problems. V. H. Winston, Washington DC Trottenberg U., Oosterlee C. and Schüller A. (2001). Multigrid. Academic Press, New York Vogel C.R. and Oman M.E. (1996). Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17: 227–238 Weickert, J., Brox, T.: Diffusion and regularization of vector- and matrix-valued images. In: Inverse Problems, Image Analysis, and Medical Imaging, Contemporary Mathematics, Nashed M., Scherzer, O. (eds.) vol. 313. AMS, Providence, pp. 251–268 (2002)