Metals in edible seaweed

Chemosphere - Tập 173 - Trang 572-579 - 2017
C. Rubio1, G. Napoleone1, G. Luis-González1, A.J. Gutiérrez1, D. González-Weller1,2, A. Hardisson1, C. Revert1
1Area de Toxicología, Universidad de La Laguna, 38071 La Laguna, Tenerife, Canary Islands, Spain
2Health Inspection and Laboratory Service, Servicio Canario de Salud, 38006 S/C de Tenerife, Canary Islands, Spain

Tài liệu tham khảo

Akcali, 2011, A biomonitoring study: heavy metals in macroalgae from eastern Aegean coastal areas, Mar. Pollut. Bull., 62, 637, 10.1016/j.marpolbul.2010.12.021 Alexander, 2012, Risk assessment of contaminats in food and feed, EFSA J., 10, 1, 10.2903/j.efsa.2012.s1004 Almeda, 2002, Heavy metal, total arsenic, and inorganic arsenic contents of algae food products, J. Agric. Food Chem., 50, 918, 10.1021/jf0110250 Almeda, 2006, Total arsenic, inorganic arsenic, lead and cadmium contents in edible seaweed sold in Spain, Food Chem. Toxicol., 44, 1901, 10.1016/j.fct.2006.06.011 Astorga-España, 2015, Mineral and trace element concentrations in seaweeds from the sub-Antarctic ecoregion of Magallanes (Chile), J. Food Compos. Anal., 39, 69, 10.1016/j.jfca.2014.11.010 Besada, 2009, Heavy metals in edible seaweeds commercialised for human consumption, J. Mar. Syst., 75, 305, 10.1016/j.jmarsys.2008.10.010 Bocanegra, 2009, Characteristics and nutritional and cardiovascular –health properties of seaweeds, J. Med. Food, 12, 236, 10.1089/jmf.2008.0151 Brito, 2012, Levels and spatial distribution of trace elements in macroalgae species from the Todos los Santos Bay, Bahía Brazil, Mar. Pollut. Bull., 64, 2238, 10.1016/j.marpolbul.2012.06.022 CEVA (Centre dÉtude et de valorization des Algues), 2014 Chakraborty, 2014, Benthic macroalgae as biological indicators of heavy metal pollution in the marine environments: a biomonitoring approach for pollution assessment, Ecotoxicol. Environ. Saf., 100, 61, 10.1016/j.ecoenv.2013.12.003 Dorta, 2015, Metals in Mullus surmuletus and Pseudupeneus prayensis from the canary islands (atlantic ocean), J. Food Prot., 78, 2257, 10.4315/0362-028X.JFP-15-148 EC (European Commission), 2008, Commission Regulation (EC) Nº 629/2008 of 2 July 2008 amending Regulation (EC) Nº 1881/2006 as regards maximum levels for certain contaminants in foodstuffs, Off. J. Eur. Union, L173, 6 EC (European Commission), 2014, Commission Regulation (EC) Nº 488/2014 of 12 May 2014 amending Regulation (EC) Nº 1881/2006 as regards maximum levels for cadmium in foodstuffs, Off. J. Eur. Union, L138, 75 EFSA (European Food Safety Authority), 2004, Opinion of the scientific Panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of boron (sodium borate and boric acid), EFSA J., 80, 1 EFSA (European Food Safety Authority), 2005, Opinion of the scientific Panel on dietetic products, nutrition and allergies on a request from the commission related to the tolerable upper intake level of nickel, EFSA J., 146, 1 EFSA, 2006 EFSA (European Food Safety Authority), 2010, Scientific opinion on lead in food, EFSA J., 8, 1570, 10.2903/j.efsa.2010.1570 EFSA (European Food Safety Authority), 2011, Statement on the evaluation of a new study related to the bioavailability of aluminum in food, EFSA J., 9, 2157, 10.2903/j.efsa.2011.2157 EFSA (European Food Safety Authority), 2011, Statement on tolerate weekly intake for cadmium, EFSA J., 9, 1975, 10.2903/j.efsa.2011.1975 FESNAD, 2010, Federación Española de Sociedades de Nutrición, Alimentación y Dietética. Ingestas dietéticas de referencia (IDR) para la población española, Act. Diet., 14, 196 Gómez-Ordóñez, 2010, Dietary fibre and physicochemical properties of several edible seaweeds from the north western Spain coast, Food Res. Int., 43, 2289, 10.1016/j.foodres.2010.08.005 Gómez-Ordóñez, 2012 González Weller, 2013, Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain), Food Chem. Toxicol., 62, 856, 10.1016/j.fct.2013.10.026 IUPAC, 1995, International union of pure and applied chemistry. Nomenclature in evaluation of analytical methods including detection and quantification capabilities, Pure Appl. Chem., 67, 1699, 10.1351/pac199567101699 Jadeja, 2013, Metal content of seaweeds in the vicinity of acid mine drainage in Almlwch, North Wales U.K. Indian, J. Geomarine Sci., 42, 16 Jiménez-Escrig, 2011, Brown and red seaweeds as potential sources of antioxidant nutraceuticals, J. Appl. Physiol., 77 Khan, 2015, Determination of toxic metals and specition of arsenic in seaweeds from South Korea, Food Chem., 169, 464, 10.1016/j.foodchem.2014.08.020 Laib, 2012, Cd, Cr, Cu, Pb and Zn concentrations in Ulva lactuca, Codium fragile, Jania rubens, and Dictyota dichotoma from rabta bay, jijel (Algeria), Environ. Monit. Assess., 184, 1711, 10.1007/s10661-011-2072-0 Larrea-Marín, 2010, Validation of an ICP-OES method for macro and trace elements determination in Laminaria and Porphira seaweeds from four different countries, J. Food Compos. Anal., 23, 814, 10.1016/j.jfca.2010.03.015 Li, 2011, Metal bioavailability and risk assessement from edible brown algae Laminaria japonica, using biomimetic digestion and absorption system and determination by ICP-MS, J. Agric. Food Chem., 59, 822, 10.1021/jf103480y Luis, 2014, Evaluation of metals in several varieties of sweet potatoes (Ipomoea batatas L.): comparative study, Environ. Monit. Assess., 186, 433, 10.1007/s10661-013-3388-8 Luis, 2014, Evaluation of content and estimation of daily intake of cadmium and lead in several varieties of potatoes (Solanum tuberosum L.) cultivated in the Canary Islands (Spain), J. Food Prot., 77, 659, 10.4315/0362-028X.JFP-13-337 Luis González, 2015, Essential and toxic metals in taros (Colocasia esculenta) cultivated in the Canary Islands (Spain): evaluation of content and estimate of daily intake, Environ. Monit. Assess., 187, 4138, 10.1007/s10661-014-4138-2 Moreda-Piñeiro, 2007, Development of a new simple pre-treatment liquid extraction for the determination of metals in edible seaweed, Anal. Chim. Acta, 598, 95, 10.1016/j.aca.2007.07.030 Murata, 2001, Production and use of marine algae in Japan, Jpn. Agric. Res. Q., 35, 281, 10.6090/jarq.35.281 Pan, 2002, Confidence intervals for comparing two scale parameters based on Levene’s statistics, J. Nonparametr. Stat., 4, 459, 10.1080/10485250213112 Pérez, 2007, Levels of essential and toxic elements in Porphyra columbina and Ulva sp. From san jorge gulf, patagonia Argentina, Sci. Total Environ., 376, 51, 10.1016/j.scitotenv.2006.11.013 Romarís-Hortas, 2010, Characterization of edible seaweed harvested on the Galician coast (northwestern Spain) using pattern recognition techniques and major and trace element data, J. Agric. Food Chem., 58, 1986, 10.1021/jf903677y Romarís-Hortas, 2012, Speciation of the bio-available iodine and bromine forms in edible seaweed by high performance liquid chromatography hypherated with inductively coupled plasma-mass spectrometry, Anal. Chim. Acta, 745, 24, 10.1016/j.aca.2012.07.035 Rubio, 2005, Lead dietary intake in a spanish population (canary islands), J. Agric. Food Chem., 53, 6543, 10.1021/jf058027v Rubio, 2006, Cadmium dietary intake in the canary islands, Spain. Environ. Res., 100, 123, 10.1016/j.envres.2005.01.008 Rubio, 2012, Evaluation of metal concentrations in menthe herbal teas (Mentha piperita, Mentha pulegium and Mentha species) by inductively coupled plasma spectrometry, J. Pharm. Biomed. Anal., 71, 11, 10.1016/j.jpba.2012.07.015 Ruíz-Navarro, 2013, Metales en algas comestibles: evaluación y estudio comparativo, Rev. Toxicol., 30, 182 Runcie, 2004, Metal concentrations in macroalgae east antartic, Mar. Pollut. Bull., 49, 1114, 10.1016/j.marpolbul.2004.09.001 Rupérez, 2002, Mineral content of edible marine seaweeds, Food Chem., 79, 23, 10.1016/S0308-8146(02)00171-1 Sánchez-Rodríguez, 2001, Elemental concentrations in different species of seaweeds from Loreto Bay, Baja California Sur, Mexico: implications for the geochemical control of metals in algal tissue, Environ. Pollut., 114, 145, 10.1016/S0269-7491(00)00223-2 Shams El-Din, 2014, Seaweeds as bioindicators of heavy metals off a hot spot area on the Egyptian Mediterranean Coast during 2008-2010, Environ. Monit. Assess., 186, 5865, 10.1007/s10661-014-3825-3 Smith, 2010, Nutrient and heavy metal content of edible seaweeds in New Zealand. New Zealand, J. Crop Hort. Sci., 38, 19, 10.1080/01140671003619290 Subba Rao, 2007, Mineral composition of edible seaweed Porphyra vietnamensis, Food Chem., 102, 215, 10.1016/j.foodchem.2006.05.009 Taboada, 2012, Nutritional value of the marine algae wakame (Undaria pinnatífica) and nori (Porphyra purpurea) as food supplements, J. Appl. Physiol., 23, 543 Topcuoglu, 2003, Heavy metal monitoring of marine algae from the turkish coast of the black Sea, 1998-2000, Chemosphere, 52, 1683, 10.1016/S0045-6535(03)00301-1 van der Spiegel, 2013, Safety of novel protein sources (insects, microalgae, seaweed, duckweed, and rapeseed) and legislative aspects for their application in food and feed production comprehensive reviews, Food Sci. Food Saf., 12, 662, 10.1111/1541-4337.12032 Wallenstein, 2009, Baseline metal concentrations in marine algae from Säo Miguel (Azores) under different ecological conditions-urban proximity and shallow water hydrothermal activity, Mar. Pollut. Bull., 58, 424, 10.1016/j.marpolbul.2008.11.021 Xu, 2002, Phenotypic polymorphism of CYP2A6 activity in a Chinese population, Eur. J. Clin. Pharmacol., 58, 333, 10.1007/s00228-002-0480-3 Zava, 2011, Assessment of Japanese iodine intake based on seaweed consumption in Japan: a literature based analysis, Thyroid. Res., 4, 14, 10.1186/1756-6614-4-14