Introducing seasonal snow memory into the RUSLE
Tóm tắt
The sediment supply to rivers, lakes, and reservoirs has a great influence on hydro-morphological processes. For instance, long-term predictions of bathymetric change for modeling climate change scenarios require an objective calculation procedure of sediment load as a function of catchment characteristics and hydro-climatic parameters. Thus, the overarching objective of this study is to develop viable and objective sediment load assessment methods in data-sparse regions. This study uses the Revised Universal Soil Loss Equation (RUSLE) and the SEdiment Delivery Distributed (SEDD) model to predict soil erosion and sediment transport in data-sparse catchments. The novel algorithmic methods build on free datasets, such as satellite and reanalysis data. Novelty stems from the usage of freely available datasets and the introduction of a seasonal snow memory into the RUSLE. In particular, the methods account for non-erosive snowfall, its accumulation over months as a function of temperature, and erosive snowmelt months after the snow fell. Model accuracy parameters in the form of Pearson’s r and Nash–Sutcliffe efficiency indicate that data interpolation with climate reanalysis and satellite imagery enables viable sediment load predictions in data-sparse regions. The accuracy of the model chain further improves when snow memory is added to the RUSLE. Non-erosivity of snowfall makes the most significant increase in model accuracy. The novel snow memory methods represent a major improvement for estimating suspended sediment loads with the empirical RUSLE. Thus, the influence of snow processes on soil erosion and sediment load should be considered in any analysis of mountainous catchments.
Từ khóa
Tài liệu tham khảo
Aleixo R, Guerrero M, Nones M, Ruther N (2020) Applying ADCPs for long‐term monitoring of SSC in rivers. Water Resour Res 56: e2019WR026087. https://doi.org/10.1029/2019WR026087
Alewell C, Borrelli P, Meusburger K, Panagos P (2019) Using the USLE: chances, challenges and limitations of soil erosion modelling. Int Soil Water Conserv Res 7:203–225. https://doi.org/10.1016/j.iswcr.2019.05.004
Almestad C (2015) Modelling of water allocation and availability in Devoll River Basin, Albania. Master’s Thesis, Norwegian University of Science and Technology
Arnold JG, Moriasi DN, Gassman PW et al (2012) SWAT: model use, calibration, and validation. Trans ASABE 55:1491–1508. https://doi.org/10.13031/2013.42256
Arnoldus HMJ (1980) An approximation of the rainfall factor in the Universal Soil Loss Equation. Assessment of Erosion 6:127–132
ASCE N (1982) Relationships between morphology of small streams and sediment yield. J Hydraulics Division 108:1328–1365. https://doi.org/10.1061/JYCEAJ.0005936
Ashley TC, McElroy B, Buscombe D et al (2020) Estimating bedload from suspended load and water discharge in sand bed rivers. Water Resour Res 56:e2019WR025883. https://doi.org/10.1029/2019WR025883
Asselman NEM (2000) Fitting and interpretation of sediment rating curves. J Hydrol 234:228–248. https://doi.org/10.1016/S0022-1694(00)00253-5
Banasik K, Hejduk L, Krajewski A, Wasilewicz M (2021) The intensity of siltation of a small reservoir in Poland and its relationship to environmental changes. CATENA 204 105436 https://doi.org/10.1016/j.catena.2021.105436
Beck HE, Zimmermann NE, McVicar TR et al (2018) Present and future Köppen-Geiger climate classification maps at 1-km resolution. Scientific Data 5, 180214 https://doi.org/10.1038/sdata.2018.214
Benavidez R, Jackson B, Maxwell D, Norton K (2018) A review of the (Revised) Universal Soil Loss Equation ((R)USLE): with a view to increasing its global applicability and improving soil loss estimates. Hydrol Earth Syst Sci 22:6059–6086. https://doi.org/10.5194/hess-22-6059-2018
Borrelli P, Alewell C, Alvarez P et al (2021) Soil erosion modelling: a global review and statistical analysis. Sci Total Environ 146494.https://doi.org/10.1016/j.scitotenv.2021.146494
Borrelli P, Märker M, Panagos P, Schütt B (2014) Modeling soil erosion and river sediment yield for an intermountain drainage basin of the Central Apennines, Italy. CATENA 114:45–58. https://doi.org/10.1016/j.catena.2013.10.007
Borrelli P, Panagos P, Märker M et al (2017a) Assessment of the impacts of clear-cutting on soil loss by water erosion in Italian forests: first comprehensive monitoring and modelling approach. CATENA 149:770–781. https://doi.org/10.1016/j.catena.2016.02.017
Borrelli P, Robinson DA, Fleischer LR et al (2017b) An assessment of the global impact of 21st century land use change on soil erosion. Nat Commun 8:2013. https://doi.org/10.1038/s41467-017-02142-7
Borrelli P, Robinson DA, Panagos P et al (2020) Land use and climate change impacts on global soil erosion by water (2015–2070). Proc Nat Acad Sci 117:21994–22001. https://doi.org/10.1073/pnas.2001403117
Boyce RC (1975) Sediment routing with sediment delivery ratios. Present and Prospective Technology for Predicting Sediment Yields and Sources US Dept Agric Publ 61–65
Brazier RE (2013) Erosion and sediment transport. Environmental Modelling: Finding Simplicity in Complexity, 2nd edn. Wiley-Blackwell, Chichester, pp 253–265
Brown LC, Foster GR (1987) Storm erosivity using idealized intensity d 180214istributions. Trans ASAE 379–386. https://doi.org/10.13031/2013.31957
Burguet M, Taguas EV, Gómez JA (2017) Exploring calibration strategies of the SEDD model in two olive orchard catchments. Geomorphology 290:17–28. https://doi.org/10.1016/j.geomorph.2017.03.034
Chen C-T, Knutson T (2008) On the verification and comparison of extreme rainfall indices from climate models. J Clim 21:1605–1621. https://doi.org/10.1175/2007JCLI1494.1
Chuenchum P, Xu M, Tang W (2019) Estimation of soil erosion and sediment yield in the Lancang-Mekong river using the Modified Revised Universal Soil Loss Equation and GIS techniques. Water 12:135. https://doi.org/10.3390/w12010135
Copernicus Land Monitoring Service (2018) Corine Land Cover 2018 Version 2020_20u1. European Environment Agency (EEA). https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
de Asis AM, Omasa K (2007) Estimation of vegetation parameter for modeling soil erosion using linear Spectral Mixture Analysis of Landsat ETM data. ISPRS J Photogramm Remote Sens 62:309–324. https://doi.org/10.1016/j.isprsjprs.2007.05.013
de Santos LN, de Azevedo CM (2001) A new procedure to estimate the RUSLE EI30 index, based on monthly rainfall data and applied to the Algarve region, Portugal. J Hydrol 250:12–18. https://doi.org/10.1016/S0022-1694(01)00387-0
de Vente J, Poesen J, Verstraeten G et al (2013) Predicting soil erosion and sediment yield at regional scales: where do we stand? Earth-Sci Rev 127:16–29. https://doi.org/10.1016/j.earscirev.2013.08.014
de Vente J, Poesen J, Govers G, Boix-Fayos C (2009) The implications of data selection for regional erosion and sediment yield modelling. Earth Surf Process Landf 34:1994–2007. https://doi.org/10.1002/esp.1884
Desmet PJJ, Govers G (1996) A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. J Soil Water Conserv 51:427–433
Diodato N, Bellocchi G (2010) MedREM, a rainfall erosivity model for the Mediterranean region. J Hydrol 387:119–127. https://doi.org/10.1016/j.jhydrol.2010.04.003
Diodato N, Bellocchi G (2007) Estimating monthly (R)USLE climate input in a Mediterranean region using limited data. J Hydrol 345:224–236. https://doi.org/10.1016/j.jhydrol.2007.08.008
Diodato N, Knight J, Bellocchi G (2013) Reduced complexity model for assessing patterns of rainfall erosivity in Africa. Glob Planet Chang 100:183–193. https://doi.org/10.1016/j.gloplacha.2012.10.016
Doherty J (2001) PEST-ASP user’s manual. Watermark Numerical Computing, Brisbane, Australia
Earth Resources Observation and Science Center (2017) Global Land Cover Characterization (GLCC). US Geological Survey. https://doi.org/10.5066/F7GB230D
Efthimiou N, Lykoudi E, Karavitis C (2017) Comparative analysis of sediment yield estimations using different empirical soil erosion models. Hydrol Sci J 62:2674–2694. https://doi.org/10.1080/02626667.2017.1404068
Ferro V, Minacapilli M (1995) Sediment delivery processes at basin scale. Hydrol Sci J 40:703–717. https://doi.org/10.1080/02626669509491460
Ferro V, Porto P (2000) Sediment Delivery Distributed (SEDD) model. J Hydrol Eng 5:411–422. https://doi.org/10.1061/(ASCE)1084-0699(2000)5:4(411)
Fischer G, Nachtergaele F, Prieler S et al (2008) The harmonized world soil database v 1.2. IIASA, Laxenburg, Austria and FAO, Rome, Italy. https://www.fao.org/soils-portal/data-hub/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
Flanagan DC, Nearing MA (1995) USDA - water erosion prediction project: hillslope profile and watershed model documentation. Nserl Rep 10:1–123
Gafurov A, Bárdossy A (2009) Cloud removal methodology from MODIS snow cover product. Hydrol Earth Syst Sci 13:1361–1373. https://doi.org/10.5194/hess-13-1361-2009
Galy A, France-Lanord C (2001) Higher erosion rates in the Himalaya: geochemical constraints on riverine fluxes. Geology 29:23–26. https://doi.org/10.1130/0091-7613(2001)029<0023:HERITH>2.0.CO;2
Gianinetto M, Aiello M, Polinelli F et al (2019) D-RUSLE: a dynamic model to estimate potential soil erosion with satellite time series in the Italian Alps. Eur J Remote Sens 52:34–53. https://doi.org/10.1080/22797254.2019.1669491
Grams PE, Topping DJ, Schmidt JC et al (2013) Linking morphodynamic response with sediment mass balance on the Colorado River in Marble Canyon: issues of scale, geomorphic setting, and sampling design. J Geophys Res 118:361–381. https://doi.org/10.1002/jgrf.20050
Griffin ML, Beasley DB, Fletcher JJ, Foster GR (1988) Estimating soil loss on topographically non-uniform field and farm units. J Soil Water Conserv 43:326–331
Haan CT, Barfield BJ, Hayes JC (1994) Design hydrology and sedimentology for small catchments. Elsevier Science, San Diego, CA, USA
Hanmaiahgari PR, Gompa NR, Pal D, Pu JH (2018) Numerical modeling of the Sakuma Dam reservoir sedimentation. Nat Hazards 91:1075–1096. https://doi.org/10.1007/s11069-018-3168-4
Härer S, Bernhardt M, Siebers M, Schulz K (2018) On the need for a time- and location-dependent estimation of the NDSI threshold value for reducing existing uncertainties in snow cover maps at different scales. Cryosphere 12:1629–1642. https://doi.org/10.5194/tc-12-1629-2018
Haun S, Dietrich S (2021) Advanced methods to investigate hydro-morphological processes in open-water environments. Earth Surf Process Landf 46:1655–1665. https://doi.org/10.1002/esp.5131
Haun S, Kjærås H, Løvfall S, Olsen NRB (2013) Three-dimensional measurements and numerical modelling of suspended sediments in a hydropower reservoir. J Hydrol 479:180–188. https://doi.org/10.1016/j.jhydrol.2012.11.060
Hersbach H, Bell B, Berrisford P et al (2020) The ERA5 global reanalysis. Q J R Meteorol Soc 146:1999–2049. https://doi.org/10.1002/qj.3803
Hiederer R (2013) Mapping soil properties for Europe: spatial representation of soil database attributes. European Commission. Joint Research Centre. Inst Environ Sustain LU
Hock R (2003) Temperature index melt modelling in mountain areas. J Hydrol 282:104–115. https://doi.org/10.1016/S0022-1694(03)00257-9
Jain MK, Kothyari UC (2000) Estimation of soil erosion and sediment yield using GIS. Hydrol Sci J 45:771–786. https://doi.org/10.1080/02626660009492376
Koirala P, Thakuri S, Joshi S, Chauhan R (2019) Estimation of soil erosion in Nepal using a RUSLE modeling and geospatial tool. Geosci 9:147. https://doi.org/10.3390/gosciences9040147
Kottek M, Grieser J, Beck C et al (2006) World Map of the Köppen-Geiger climate classification updated. Meteorol Zeitschrift 15:259–263. https://doi.org/10.1127/0941-2948/2006/0130
Lana-Renault N, Alvera B, García-Ruiz JM (2011) Runoff and sediment transport during the snowmelt period in a Mediterranean high-mountain catchment. Arct Antarct Alp Res 43:213–222. https://doi.org/10.1657/1938-4246-43.2.213
Levenberg K (1944) A method for the solution of certain non-linear problems in least squares. Q Appl Math 2:164–168. https://doi.org/10.1090/qam/10666
Liu BY, Nearing MA, Risse LM (1994) Slope gradient effects on soil loss for steep slopes. Trans ASAE 37:1835–1840. https://doi.org/10.13031/2013.28273
Märker M, Angeli L, Bottai L et al (2008) Assessment of land degradation susceptibility by scenario analysis: a case study in Southern Tuscany, Italy. Geomorphol 93:120–129. https://doi.org/10.1016/j.geomorph.2006.12.020
Marquardt DW (1963) An algorithm for least-squares estimation of nonlinear parameters. J Soc Indust Appl Math 11:431–441. https://doi.org/10.1137/0111030
McCool DK, Brown LC, Foster GR et al (1987) Revised slope steepness factor for the Universal Soil Loss Equation. Trans ASAE 30:1387–1396. https://doi.org/10.13031/2013.30576
McCool DK, Wischmeier WH, Johnson LC (1982) Adapting the Universal Soil Loss Equation to the Pacific Northwest. Trans ASAE 25:0928–0934. https://doi.org/10.13031/2013.33642
Melsen LA, Teuling AJ, Torfs PJJF et al (2019) Subjective modeling decisions can significantly impact the simulation of flood and drought events. J Hydrol 568:1093–1104. https://doi.org/10.1016/j.jhydrol.2018.11.046
Meusburger K, Steel A, Panagos P et al (2012) Spatial and temporal variability of rainfall erosivity factor for Switzerland. Hydrol Earth Syst Sci 16:167–177. https://doi.org/10.5194/hess-16-167-2012
Milliman J, Syvitski J (1991) Geomorphic tectonic control of sediment discharge to ocean – the importance of small mountainous rivers. J Geol 100:525–544. https://doi.org/10.1086/629606
Morgan RPC, Nearing MA (eds) (2010) Handbook of Erosion Modelling: Morgan/Handbook of Erosion Modelling. John Wiley & Sons, Ltd, Chichester, UK
Mouris K, Beckers F, Haun S (2018) Three-dimensional numerical modeling of hydraulics and morphodynamics of the Schwarzenbach reservoir. E3S Web of Conferences 40:03005. https://doi.org/10.1051/e3sconf/20184003005
Mouris K, Morales Oreamuno MF, Schwindt S (2021a) SEDD. Version 0.1.2. https://github.com/KMouris/SEDD
Mouris K, Morales Oreamuno MF, Schwindt S (2021b) Sediment_Load_Calculation. Version 0.1.3. https://github.com/KMouris/Sediment_Load_Calculation
Mouris K, Morales Oreamuno MF, Schwindt S (2021c) R_fac_snow. Version 0.1.3. https://github.com/KMouris/R_fac_snow
Mouris K, Schwindt S, Haun S et al (2021d) Climate reanalysis data with global coverage enable sediment load prediction in the absence of systematic field data. In: vEGU21: Gather Online. European Geosciences Union. https://doi.org/10.5194/egusphere-egu21-8432
Mulder VL, de Bruin S, Schaepman ME, Mayr TR (2011) The use of remote sensing in soil and terrain mapping — a review. Geoderma 162:1–19. https://doi.org/10.1016/j.geoderma.2010.12.018
Naipal V, Reick C, Pongratz J, Van Oost K (2015) Improving the global applicability of the RUSLE model - adjustment of the topographical and rainfall erosivity factors. Geosci Model Dev 8:2893–2913. https://doi.org/10.5194/gmd-8-2893-2015
Nearing MA (1997) A single, continuous function for slope steepness influence on soil loss. Soil Sci Soc Am J 61:917. https://doi.org/10.2136/sssaj1997.03615995006100030029x
Nearing MA (2013) Soil erosion and conservation. In: Environmental Modelling: Finding Simplicity in Complexity. Wiley-Blackwell, Chichester, West Sussex; Hoboken, NJ, pp 365–378
Olsen NRB, Hillebrand G (2018) Long-time 3D CFD modeling of sedimentation with dredging in a hydropower reservoir. J Soils Sediments 18:3031–3040. https://doi.org/10.1007/s11368-018-1989-0
Panagos P, Borrelli P, Meusburger K et al (2015a) Estimating the soil erosion cover-management factor at the European scale. Land Use Policy 48:38–50. https://doi.org/10.1016/j.landusepol.2015.05.021
Panagos P, Borrelli P, Meusburger K et al (2015b) Modelling the effect of support practices (P-factor) on the reduction of soil erosion by water at European scale. Environ Sci Policy 51:23–34. https://doi.org/10.1016/j.envsci.2015.03.012
Panagos P, Borrelli P, Poesen J et al (2015c) The new assessment of soil loss by water erosion in Europe. Environ Sci Policy 54:438–447. https://doi.org/10.1016/j.envsci.2015.08.012
Panagos P, Meusburger K, Ballabio C et al (2014) Soil erodibility in Europe: a high-resolution dataset based on LUCAS. Sci Total Environ 479–480:189–200. https://doi.org/10.1016/j.scitotenv.2014.02.010
Perks MT, OwenBenskin GJCMcWH et al (2015) Dominant mechanisms for the delivery of fine sediment and phosphorus to fluvial networks draining grassland dominated headwater catchments. Sci Total Environ 523:178–190. https://doi.org/10.1016/j.scitotenv.2015.03.008
Porto P, Walling DE (2015) Use of caesium-137 measurements and long-term records of sediment load to calibrate the sediment delivery component of the SEDD model and explore scale effect: examples from southern Italy. J Hydrol Eng 20:C4014005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001058
Prabhanjan A, Rao EP, Eldho TI (2015) Application of SWAT model and geospatial techniques for sediment-yield modeling in ungauged watersheds. J Hydrol Eng 20:C6014005. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001123
Ranzi R, Le TH, Rulli MC (2012) A RUSLE approach to model suspended sediment load in the Lo river (Vietnam): effects of reservoirs and land use changes. J Hydrol 422–423:17–29. https://doi.org/10.1016/j.jhydrol.2011.12.009
Renard KG (ed) (1997) Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). D. C, Washington
Renard KG, Foster GR, Weesies GA, Porter JP (1991) RUSLE: Revised Universal Soil Loss Equation. J Soil Water Conserv 46(1):30–33
Riggs GA, Hall DK, Salomonson VV (1994) A snow index for the Landsat Thematic Mapper and Moderate Resolution Imaging Spectroradiometer. In: Proceedings of IGARSS ’94 - 1994 IEEE Internatl Geosci Remote Sens Symp 4, 1942–1944
Rovira A, Batalla RJ (2006) Temporal distribution of suspended sediment transport in a Mediterranean basin: the lower Tordera (NE SPAIN). Geomorphology 79:58–71. https://doi.org/10.1016/j.geomorph.2005.09.016
Schmidt S, Alewell C, Meusburger K (2019) Monthly RUSLE soil erosion risk of Swiss grasslands. J Maps 15:247–256. https://doi.org/10.1080/17445647.2019.1585980
Schmidt S, Alewell C, Panagos P, Meusburger K (2016) Regionalization of monthly rainfall erosivity patterns in Switzerland. Hydrol Earth Syst Sci 20:4359–4373. https://doi.org/10.5194/hess-20-4359-2016
Schönbrodt S, Saumer P, Behrens T et al (2010) Assessing the USLE crop and management factor C for soil erosion modeling in a large mountainous watershed in Central China. J Earth Sci 21:835–845. https://doi.org/10.1007/s12583-010-0135-8
Schwertmann U, Vogl W, Kainz M (1987) Bodenerosion durch Wasser: Vorhersage des Abtrags und Bewertung von Gegenmaßnahmen. Ulmer, Stuttgart
Shoarinezhad V, Wieprecht S, Haun S (2020) Comparison of local and global optimization methods for calibration of a 3D morphodynamic model of a curved channel. Water 12:1333. https://doi.org/10.3390/w12051333
Song X, Zhan C, Kong F, Xia J (2011) Advances in the study of uncertainty quantification of large-scale hydrological modeling system. J Geogr Sci 21:801. https://doi.org/10.1007/s11442-011-0881-2
Stevens CJ, Quinton JN, Bailey AP et al (2009) The effects of minimal tillage, contour cultivation and in-field vegetative barriers on soil erosion and phosphorus loss. Soil Tillage Res 106:145–151. https://doi.org/10.1016/j.still.2009.04.009
Tan Z, Leung LR, Li H-Y, Tesfa T (2018) Modeling sediment yield in land surface and earth system models: model comparison, development, and evaluation. J Adv Model Earth Syst 10:2192–2213. https://doi.org/10.1029/2017MS001270
Teng H, Viscarra Rossel RA, Shi Z et al (2016) Assimilating satellite imagery and visible–near infrared spectroscopy to model and map soil loss by water erosion in Australia. Environ Model Softw 77:156–167. https://doi.org/10.1016/j.envsoft.2015.11.024
Thackway R, Lymburner L, Guerschman J (2013) Dynamic land cover information: bridging the gap between remote sensing and natural resource management. Ecol Soc 18:2. https://doi.org/10.5751/ES-05229-180102
Torri D, Borselli L, Guzzetti F et al (2006) Italy. In: Soil Erosion in Europe. John Wiley & Sons, Ltd, Chichester, UK, pp 245–261
Turowski JM, Rickenmann D, Dadson SJ (2010) The partitioning of the total sediment load of a river into suspended load and bedload: a review of empirical data: the partitioning of sediment load. Sedimentology 57:1126–1146. https://doi.org/10.1111/j.1365-3091.2009.01140.x
Vercruysse K, Grabowski RC, Rickson RJ (2017) Suspended sediment transport dynamics in rivers: multi-scale drivers of temporal variation. Earth-Sci Rev 166:38–52. https://doi.org/10.1016/j.earscirev.2016.12.016
Walling DE (1983) The sediment delivery problem. J Hydrol 65:209–237. https://doi.org/10.1016/0022-1694(83)90217-2
Walling DE, Webb BW (1996) Erosion and sediment yield: a global overview. In: Erosion and Sediment Yield: Global and Regional Perspectives. IAHS Publ 236, pp 3–19
White S (2006) Sediment yield prediction and modeling. In: Encyclopedia of Hydrological Sciences. John Wiley & Sons, Ltd, Hoboken, NJ, USA
Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses: a guide to conservation planning. Department of Agriculture, Science and Education Administration
Wischmeier WH, Smith DD (1965) Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. 74
Wright SA, Topping DJ, Rubin DM, Melis TS (2010) An approach for modeling sediment budgets in supply-limited rivers. Water Resour Res 46.https://doi.org/10.1029/2009WR008600
Wu Y, Ouyang W, Hao Z et al (2018) Snowmelt water drives higher soil erosion than rainfall water in a mid-high latitude upland watershed. J Hydrol 556:438–448. https://doi.org/10.1016/j.jhydrol.2017.11.037
Yang D, Kanae S, Oki T et al (2003) Global potential soil erosion with reference to land use and climate changes. Hydrol Process 17:2913–2928. https://doi.org/10.1002/hyp.1441
Yang X (2015) Digital mapping of RUSLE slope length and steepness factor across New South Wales. Australia Aust J Soil Res 53:216. https://doi.org/10.1071/SR14208
Yin S, Nearing MA, Borrelli P, Xue X (2017) Rainfall erosivity: an overview of methodologies and applications. Vadose Zone J 16:vzj2017.06.0131. https://doi.org/10.2136/vzj2017.06.0131
Zhang H, Wei J, Yang Q et al (2017) An improved method for calculating slope length (λ) and the LS parameters of the Revised Universal Soil Loss Equation for large watersheds. Geoderma 308:36–45. https://doi.org/10.1016/j.geoderma.2017.08.006
