Otolith morphology of four mackerel species (Scomberomorus spp.) in Australia: Species differentiation and prediction for fisheries monitoring and assessment

Fisheries Research - Tập 176 - Trang 39-47 - 2016
Mitchell T. Zischke1, Lenore Litherland2, Benjamin R. Tilyard3, Nicholas J. Stratford3, Ebony L. Jones4, You-Gan Wang5
1Department of Forestry and Natural Resources, Purdue University, 195 Marsteller St, West Lafayette, IN 47907, United States
2Fisheries Queensland, Department of Agriculture and Fisheries, G.P.O. Box 267, Brisbane, QLD 4001, Australia
3School of Geography, Planning and Environmental Management, The University of Queensland, Brisbane, QLD, 4072, Australia
4School of Mathematics and Physics, The University of Queensland, Brisbane, QLD 4072, Australia
5School of Mathematical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia

Tài liệu tham khảo

Avigliano, 2015, Assessment of the morphometry of saccular otoliths as a tool to identify triplefin species (Tripterygiidae), J. Mar. Biol. Assoc. U. K., 10.1017/S0025315415001101 Ballagh, 2006, Growth trends of Queensland east coast Spanish mackerel (Scomberomorus commerson) from otolith back-calculations, Mar. Freshw. Res ., 57, 383, 10.1071/MF05173 Bani, 2013, Comparative morphology of the sagittal otolith in three species of south Caspian gobies, J. Fish Biol., 82, 1321, 10.1111/jfb.12073 Begg, 1997, Feeding patterns of school mackerel (Scomberomorus queenslandicus) and spotted mackerel (S. munroi) in Queensland east-coast waters, Mar. Freshw Res., 48, 565, 10.1071/MF97064 Begg, 1998, Stock discrimination of school mackerel, Scomberomorus queenslandicus, and spotted mackerel, Scomberomorus munroi, in coastal waters of eastern Australia by analysis of minor and trace elements in whole otoliths, Fish. Bull., 96, 653 Begg, G.A., O'Neill, M.F., Cadrin, S.X., Bergenius, M.A.J., 2005. Stock assessment of the Australian east-coast spotted mackerel fishery, CRC Reef Research Centre Technical Report No. 58, CRC Reef Research Centre, Townsville, Australia. Available from <https://www.daf.qld.gov.au/__data/assets/pdf_file/0003/72642/StockAssessment-SpotMackerel-2005-complete.pdf> (accessed 29.10.15.). Bird, 2002, Explaining shellfish variability in middens on the Meriam Islands, Torres Strait, Australia, J. Archaeol. Sci., 29, 457, 10.1006/jasc.2001.0734 Bostanci, 2015, Using otolith shape and morphometry to identify four Alburnus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish inland waters, J. Appl. Ichthyol., 31, 1013, 10.1111/jai.12860 Bowen, 2000, Reconstruction of pinniped diets: accounting for complete digestion of otoliths and cephalopod beaks, Can. J. Fish. Aquat. Sci., 57, 898, 10.1139/f00-032 Cameron, D., Begg, G., 2002. Fisheries biology and interaction in the northern Australian small mackerel fishery, Final report for FRDC projects 92/144 and 92/144.02, Fisheries Research and Development Corporation, Canberra, ACT, Australia. Campana, 1993, Stock discrimination using otolith shape analysis, Can. J. Fish. Aquat. Sci., 50, 1062, 10.1139/f93-123 Campana, 2001, Otoliths, increments, and elements: keys to a comprehensive understanding of fish populations?, Can. J. Fish. Aquat. Sci., 58, 30, 10.1139/f00-177 Campbell, 2012 Cann, 1991, Coastal aboriginal shell middens and their palaeoenvironmental significance, Robe Range, South Australia, Trans. R. Soc. S. Aust., 115, 161 Cardinale, 2004, Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths, Can. J. Fish. Aquat. Sci., 61, 158, 10.1139/f03-151 Collette, B.B., Nauen, C.E., 1983. FAO Species Catalogue Vol. 2 Scombrids of the world, FAO Fisheries Synopsis No. 125, Rome. Collette, 1984, Morphology, systematics, and biology of the Spanish mackerels (Scomberomorus, Scombridae), Fish. Bull., 82, 545 Disspain, 2015, 2015. Otoliths in archaeology: Methods, applications and future prospects, J. Archaeol. Sci. Duarte-Neto, 2008, The use of sagittal otoliths in discriminating stocks of common dolphinfish (Coryphaena hippurus) off northeastern Brazil using multishape descriptors, ICES J. Mar. Sci., 65, 1144, 10.1093/icesjms/fsn090 Elliot, 1995, Morphometric analysis of orange roughy (Hoplostethus atlanticus) off the continental slope of southern Australia, J. Fish Biol., 46, 202, 10.1111/j.1095-8649.1995.tb05962.x FAO, 2014. FISHSTAT Plus: Universal software for fishery statistical time series. Version 2.11.4. FAO Fisheries Department, Fishery Information, Data and Statistics Unit. Available from <http://www.fao.org/fishery/statistics/software/fishstat/en> (accessed 14.03.15.). Ferguson, 2011, Otolith shape and elemental composition: complementary tools for stock discrimination of mulloway (Argyrosomus japonicus) in southern Australia, Fish. Res., 110, 75, 10.1016/j.fishres.2011.03.014 Fisheries Queensland, 2007 Fisheries Queensland, 2010 Fisheries Queensland, 2012 Flood, M., Stobutzki, I., Andrews, J., Ashby, C., Begg, G., Fletcher, R., Gardner, C., Georgeson, L., Hansen, S., Hartmann, K., Hone, P., Horvat, P., Maloney, L., McDonald, B., Moore, A., Roelofs, A., Sainsbury, K., Saunders, T., Smith, T., Stewardson, C., Steward, J., Wise, B., 2014. Status of key Australian fish stocks reports 2014, Canberra, ACT, Australia. Available from< http://www.fish.gov.au/pages/safs_report.aspx> (accessed 10.03.15.). Furlani, 2007 Gagliano, 2004, Feeding history influences otolith shape in tropical fish, Mar. Ecol.: Prog. Ser., 278, 291, 10.3354/meps278291 Gales, 1988, The use of otoliths as indicators of Little Penguin Eudyptula minor diet, Ibis, 130, 418, 10.1111/j.1474-919X.1988.tb00999.x Hunt, 1992, Morphological characteristics of otoliths for selected fish in the Northwest Atlantic, J. Northwest Atl. Fish. Sci., 13, 63, 10.2960/J.v13.a5 Hüssy, 2008, Otolith shape in juvenile cod (Gadus morhua): ontogenetic and environmental effects, J. Exp. Mar. Biol. Ecol., 364, 35, 10.1016/j.jembe.2008.06.026 Izenman, 2008 Lemos, 2014 Lleonart, 2000, Removing allometric effects of body size in morphological analysis, J. Theor. Biol., 205, 85, 10.1006/jtbi.2000.2043 Mountrakis, 2011, Support vector machines in remote sensing: a review, ISPRS J. Photogramm. Remote Sens., 66, 247, 10.1016/j.isprsjprs.2010.11.001 Newman, 2009, Spatial subdivision among assemblages of Spanish mackerel, Scomberomorus commerson (Pisces: Scombridae) across northern Australia: implications for fisheries management, Global Ecol. Biogeogr., 18, 711, 10.1111/j.1466-8238.2009.00475.x Newman, 2010, Stock structure of Grey Mackerel, Scomberomorus semifasciatus (Pisces: Scombridae) across northern Australia, based on otolith stable isotope chemistry, Environ. Biol. Fish., 89, 357, 10.1007/s10641-010-9668-z Newman, 2012, Age-based demography and relative fisheries productivity of Spanish mackerel, Scomberomorus commerson (Lacepede) in Western Australia, Fish. Res., 129-130, 46, 10.1016/j.fishres.2012.06.006 Core Team, 2014 Reichenbacher, 2007, Combined otolith morphology and morphometry for assessing taxonomy and diversity in fossil and extant killifish (Aphanius, †Prolebias), J. Morphol., 268, 898, 10.1002/jmor.10561 Rooker, 2008, Evidence of trans-Atlantic movement and natal homing of bluefin tuna from stable isotopes in otoliths, Mar. Ecol.: Prog. Ser., 368, 231, 10.3354/meps07602 Shepard, 2010, Trends in atlantic contribution to mixed-stock king mackerel landings in south Florida Inferred from otolith shape analysis, Mar. Coast. Fish., 2, 195, 10.1577/C09-014.1 Skeljo, 2012, The use of otolith shape and morphometry for identification and size-estimation of five wrasse species in predator-prey studies, J. Appl. Ichthyol., 28, 524, 10.1111/j.1439-0426.2011.01925.x Skirtun, 2013 Smith, 1992, Regional differences in otolith morphology of the deep slope red snapper Etelis carbunculus, Can. J. Fish. Aquat. Sci., 49, 795, 10.1139/f92-090 Steinwart, 2008, Support vector machines Sulaiman, 2010, Population genetic evidence for the east-west division of the narrow-barred Spanish mackerel (Scomberomorus commerson, Perciformes: Teleostei) along Wallace's Line, Biodivers. Conserv., 19, 563, 10.1007/s10531-009-9699-y Torres, 2000, Sagittal otolith size and shape variability to identify geographical intraspecific differences in three species of the genus Merluccius, J. Mar. Biol. Assoc. U. K., 80, 333, 10.1017/S0025315499001915 Tuset, 2003, Comparative morphology of the sagittal otolith in Serranus spp, J. Fish Biol., 63, 1491, 10.1111/j.1095-8649.2003.00262.x Tuset, 2003, Shape indices to identify regional differences in otolith morphology of comber, Serranus cabrilla (L., 1758), J. Appl. Ichthyol., 19, 88, 10.1046/j.1439-0426.2003.00344.x Tuset, 2006, Sagittal otolith shape used in the identification of fishes of the genus Serranus, Fish. Res., 81, 316, 10.1016/j.fishres.2006.06.020 Venables, 2002 Wakefield, 2014, Rapid and reliable multivariate discrimination for two cryptic Eteline snappers using otolith morphometry, Fish. Res., 151, 100, 10.1016/j.fishres.2013.10.011 Ward, T., Rogers, P., 2003. Northern mackerel (Scombridae: Scomberomorus): Current and future research needs, Final Report for FRDC Project 2002/096, South Australian Research and Development Institute, Henley Beach, SA, Australia. Available from <http://frdc.com.au/research/Final_Reports/2002-096-DLD.pdf> (accessed 10.03.15.). Zhang, 2013, Stock discrimination of the Japanese Spanish mackerel (Scomberomorus niphonius) based on the otolith shape analysis in the Yellow Sea and Bohai Sea, J. Appl. Ichthyol., 29, 368, 10.1111/jai.12084 Zhuang, 2015, Application of otolith shape analysis to species separation in Sebastes spp. from the Bohai Sea and the Yellow Sea, northwest Pacific, Environ. Biol. Fishes, 98, 547, 10.1007/s10641-014-0286-z