Strains of the soil fungus Mortierella show different degradation potentials for the phenylurea herbicide diuron

Biodegradation - Tập 24 - Trang 765-774 - 2013
Lea Ellegaard-Jensen1,2, Jens Aamand2, Birthe B. Kragelund3, Anders H. Johnsen4, Søren Rosendahl1
1Department of Biology, Copenhagen University, Copenhagen Ø, Denmark
2Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen K, Denmark
3Structural Biology and NMR Laboratory, Department of Biology, University of Copenhagen, Copenhagen N, Denmark
4Department of Clinical Biochemistry, Rigshospitalet, Copenhagen Ø, Denmark

Tóm tắt

Microbial pesticide degradation studies have until now mainly focused on bacteria, although fungi have also been shown to degrade pesticides. In this study we clarify the background for the ability of the common soil fungus Mortierella to degrade the phenylurea herbicide diuron. Diuron degradation potentials of five Mortierella strains were compared, and the role of carbon and nitrogen for the degradation process was investigated. Results showed that the ability to degrade diuron varied greatly among the Mortierella strains tested, and the strains able to degrade diuron were closely related. Degradation of diuron was fastest in carbon and nitrogen rich media while suboptimal nutrient levels restricted degradation, making it unlikely that Mortierella utilize diuron as carbon or nitrogen sources. Degradation kinetics showed that diuron degradation was followed by formation of the metabolites 1-(3,4-dichlorophenyl)-3-methylurea, 1-(3,4-dichlorophenyl)urea and an hitherto unknown metabolite suggested to be 1-(3,4-dichlorophenyl)-3-methylideneurea.

Tài liệu tham khảo

Badawi N, Ronhede S, Olsson S, Kragelund BB, Johnsen AH, Jacobsen OS, Aamand J (2009) Metabolites of the phenylurea herbicides chlorotoluron, diuron, isoproturon and linuron produced by the soil fungus Mortierella sp. Environ Pollut 157(10):2806–2812. doi:10.1016/j.envpol.2009.04.019 El-Bestawy E, Albrechtsen H-J (2007) Effect of nutrient amendments and sterilization on mineralization and/or biodegradation of 14C-labeled MCPP by soil bacteria under aerobic conditions. Int Biodeterior Biodegrad 59(3):193–201 El-Deeb B, Soltan S, Ali A, Ali K (2000) Detoxication of the herbicide diuron by Pseudomonas sp. Folia Microbiol 45(3):211–216. doi:10.1007/bf02908946 Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3(1):85–90 Eriksson E, Baun A, Mikkelsen PS, Ledin A (2007) Risk assessment of xenobiotics in stormwater discharged to Harrestrup Å, Denmark. Desalination 215(1–3):187–197 European Parliament EU (2008) Priority Substances Directive (Directive 2008/105/EC). Official Journal of the European Union Fomina M, Ritz K, Gadd GM (2003) Nutritional influence on the ability of fungal mycelia to penetrate toxic metal-containing domains. Mycol Res 107(7):861–871 Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes—application to the identification of mycorrhizae and rusts. Mol Ecol 2(2):113–118. doi:10.1111/j.1365-294X.1993.tb00005.x Gardes M, Bruns TD (1996) ITS-RFLP matching for identification of fungi. In: Clapp JP (ed) Methods in molecular biology: species diagnostics protocols—PCR and other nucleic acid methods, vol 50. Humana Press Inc., Totowa, pp 177–186 Grube A, Donaldson D, Kiely T, Wu L (2011) Pesticides industry sales and usage. Environmental Protection Agency, US Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192. doi:10.1038/nrmicro2519 Hussain S, Sørensen SR, Devers-Lamrani M, El-Sebai T, Martin-Laurent F (2009) Characterization of an isoproturon mineralizing bacterial culture enriched from a French agricultural soil. Chemosphere 77(8):1052–1059 Khadrani A, Seigle-Murandi F, Steiman R, Vroumsia T (1999) Degradation of three phenylurea herbicides (chlortoluron, isoproturon and diuron) by micromycetes isolated from soil. Chemosphere 38(13):3041–3050 Kulshrestha G, Kumari A (2011) Fungal degradation of chlorpyrifos by Acremonium sp. strain (GFRC-1) isolated from a laboratory-enriched red agricultural soil. Biol Fertil Soils 47(2):219–225. doi:10.1007/s00374-010-0505-5 Lapworth DJ, Gooddy DC (2006) Source and persistence of pesticides in a semi-confined chalk aquifer of southeast England. Environ Pollut 144(3):1031–1044 Ritz K, Young IM (2004) Interactions between soil structure and fungi. Mycologist 18(2):52–59 Robertson GP, Groffman PM (2007) Nitrogen transformations. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic Press, Burlington, pp 341–364 Rønhede S, Jensen B, Rosendahl S, Kragelund BB, Juhler RK, Aamand J (2005) Hydroxylation of the herbicide isoproturon by fungi isolated from agricultural soil. Appl Environ Microbiol 71(12):7927–7932. doi:10.1128/aem.71.12.7927-7932.2005 Simonsen A, Holtze MS, Sørensen SR, Sørensen SJ, Aamand J (2006) Mineralisation of 2,6-dichlorobenzamide (BAM) in dichlobenil-exposed soils and isolation of a BAM-mineralising Aminobacter sp. Environ Pollut 144(1):289–295 Sørensen SR, Albers CN, Aamand J (2008) Rapid mineralization of the phenylurea herbicide diuron by Variovorax sp. SRS16 in pure culture and within a two-member consortium. Appl Environ Microbiol 74:2332–2340. doi:10.1128/aem.02687-07 Struger J, Grabuski J, Cagampan S, Rondeau M, Sverko E, Marvin C (2011) Occurrence and distribution of sulfonylurea and related herbicides in central Canadian surface waters 2006–2008. Bull Environ Contam Toxicol 87(4):420–425 Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121 Teng Y, Luo Y, Ping L, Zou D, Li Z, Christie P (2010) Effects of soil amendment with different carbon sources and other factors on the remediation of an aged PAH-contaminated soil. Biodegradation 21(2):167–178. doi:10.1007/s10532-009-9291-x Tixier C, Bogaerts P, Sancelme M, Bonnemoy F, Twagilimana L, Cuer A, Bohatier J, Veschambre H (2000) Fungal biodegradation of a phenylurea herbicide, diuron: structure and toxicity of metabolites. Pest Manag Sci 56(5):455–462 Tixier C, Sancelme M, Bonnemoy F, Cuer A, Veschambre H (2001) Degradation products of a phenylurea herbicide, diuron: synthesis, ecotoxicity, and biotransformation. Environ Toxicol Chem 20(7):1381–1389 Torstensson L (2001) Use of herbicides on railway tracks in Sweden. Pestic Outlook 12(1):16–21 Vroumsia T, Steiman R, SeigleMurandi F, BenoitGuyod JL, Khadrani A (1996) Biodegradation of three substituted phenylurea herbicides (chlorotoluron, diuron, and isoproturon) by soil fungi. A comparative study. Chemosphere 33(10):2045–2056 White TJ, Bruns TD, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., San Diego, pp 315–322 Wösten HAB, van Wetter MA, Lugones LG, van der Mei HC, Busscher HJ, Wessels JGH (1999) How a fungus escapes the water to grow into the air. Curr Biol 9(2):85–88