Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease

Clinical Neurophysiology - Tập 128 - Trang 2058-2067 - 2017
L.R. Trambaiolli1, N. Spolaôr2, A.C. Lorena3, R. Anghinah4, J.R. Sato1
1Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, Santo André, Brazil
2Laboratório de Bioinformática, Centro de Engenharia e Ciências Exatas, Universidade Estadual do Oeste do Paraná, Foz do Iguaçu, Brazil
3Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo, São José dos Campos, Brazil
4Reference Center for Cognitive Disorders, Hospital das Clínicas, University of São Paulo, Rua Arruda Alvim 206, São Paulo, Brazil

Tài liệu tham khảo

Aarabi, 2006, Automated neonatal seizure detection: A multistage classification system through feature selection based on relevance and redundancy analysis, Clin Neurophysiol, 117, 328, 10.1016/j.clinph.2005.10.006 Abeel, 2010, Robust biomarker identification for cancer diagnosis with ensemble feature selection methods, Bioinformatics, 26, 392, 10.1093/bioinformatics/btp630 Ahmadlou, 2010, New diagnostic EEG markers of the Alzheimer’s disease using visibility graph, J Neural Transm, 117, 1099, 10.1007/s00702-010-0450-3 Anghinah, 2006, Biologic artifacts in quantitative EEG, Arq Neuro-psiquiat, 64, 264, 10.1590/S0004-282X2006000200017 Batsch, 2012 Chu, 2012, Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images, Neuroimage, 60, 59, 10.1016/j.neuroimage.2011.11.066 Coben, 1983, Frequency analysis of the resting awake EEG in mild senile dementia of Alzheimer type, Electroencephalogr Clin Neurophysiol, 55, 372, 10.1016/0013-4694(83)90124-4 Cristianini, 2000 Dwork C, Kumar R, Naor M, Sivakumar D. Rank aggregation methods for the web. In: Proceedings of the 10th international conference on World Wide Web; 2001, p. 613–22. Epstein, 1995, Digital EEG: choosing the right equipment for your lab, 1 Esterman, 2010, Avoiding non-independence in fMRI data analysis: leave one subject out, Neuroimage, 50, 572, 10.1016/j.neuroimage.2009.10.092 Fan, 2005, Working set selection using second order information for training SVM, J Mach Learn Res, 6, 1889 Guyon, 2007, Competitive baseline methods set new standards for the NIPS 2003 feature selection benchmark, Pattern Recognit Lett, 28, 1438, 10.1016/j.patrec.2007.02.014 Hall MA, Smith LA. Practical feature subset selection for machine learning. In: Proc. 21st Australian computer science conf, 1998, p. 181–91. Hall, 1999 Hall, 2009, The WEKA data mining software: an update, SIGKDD Explor, 11, 10, 10.1145/1656274.1656278 Hampel, 2010, Biomarkers for Alzheimer's disease: academic, industry and regulatory perspectives, Nat Rev Drug Discov, 9, 560, 10.1038/nrd3115 Hampel, 2010, Biological markers of amyloid β-related mechanisms in Alzheimer's disease, Exp Neurol, 223, 334, 10.1016/j.expneurol.2009.09.024 Haynes, 2006, Decoding mental states from brain activity in humans, Nat Rev Neurosci, 7, 523, 10.1038/nrn1931 Huang, 2000, Discrimination of Alzheimer's disease and mild cognitive impairment by equivalent EEG sources: a cross-sectional and longitudinal study, Clin Neurophysiol, 111, 1961, 10.1016/S1388-2457(00)00454-5 Ihl, 1993, Segmentation of the spontaneous EEG in dementia of the Alzheimer type, Neuropsychobiology, 27, 231, 10.1159/000118986 Ihl, 1996, Topography of the maximum of the amplitude of EEG frequency bands in dementia of the Alzheimer type, Biol Psychiatry, 39, 319, 10.1016/0006-3223(95)00174-3 Jelic, 2000, Quantitative electroencephalography in mild cognitive impairment: longitudinal changes and possible prediction of Alzheimer’s disease, Neurobiol Aging, 21, 533, 10.1016/S0197-4580(00)00153-6 Jeong, 2004, EEG dynamics in patients with Alzheimer's disease, Clin Neurophysiol, 115, 1490, 10.1016/j.clinph.2004.01.001 Klass, 1995, Electroencephalography of the elderly, J Clin Neurophysiol, 12, 116, 10.1097/00004691-199503000-00002 Kohavi, 1997, Wrappers for feature subset selection, Artif Intell, 97, 273, 10.1016/S0004-3702(97)00043-X Kononenko, 1994, Estimating attributes: Analysis and extensions of RELIEF, vol. 784 Lehmann, 2007, Application and comparison of classification algorithms for recognition of Alzheimer's disease in electrical brain activity (EEG), J Neurosci Methods, 161, 342, 10.1016/j.jneumeth.2006.10.023 Leuchter, 1987, Electroencephalographic spectra and coherence in the diagnosis of Alzheimer's-type and multi-infarct dementia: a pilot study, Arch Gen Psychiatry, 44, 993, 10.1001/archpsyc.1987.01800230073012 Leuchter, 1993, Regional differences in brain electrical activity in dementia: use of spectral power and spectral ratio measures, Electroencephalogr Clinical Neurophysiol, 87, 385, 10.1016/0013-4694(93)90152-L Liu H, Setiono R. Chi2: Feature selection and discretization of numeric attributes. In: Proc. 70th IEEE internat conf on tools with Artif Intell, 1995, p. 388–8. Liu, 1996, A probabilistic approach to feature selection-a filter solution, ICML, 96, 319 Liu, 1998 Liu, 2007 Luccas, 1996, Guidelines for recording/analyzing quantitative EEG and evoked potentials: Part I. General aspects [in portuguese], Braz J Epilepsy Clin Neurophysiol, 2, 175 McKhann, 1984, Clinical diagnosis of Alzheimer's disease Report of the NINCDS-ADRDA Work Group∗ under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease, Neurology, 34, 939, 10.1212/WNL.34.7.939 Moretti, 2004, Individual analysis of EEG frequency and band power in mild Alzheimer's disease, Clin Neurophysiol, 115, 299, 10.1016/S1388-2457(03)00345-6 Niedermeyer, 2005 Noirhomme, 2014, Biased binomial assessment of cross-validated estimation of classification accuracies illustrated in diagnosis predictions, NeuroImage Clin, 4, 687, 10.1016/j.nicl.2014.04.004 Parikh D, Stepenosky N, Topalis A, Green D, Kounios J, Clark C, et al. Ensemble based data fusion for early diagnosis of Alzheimer's disease. In: IEEE conf of the engineering in medicine and biology society, 2005, p. 2479–82. Park, 2012, Gamma oscillatory activity in relation to memory ability in older adults, Int J Psychophysiol, 86, 58, 10.1016/j.ijpsycho.2012.08.002 Prati RC. Combining feature ranking algorithms through rank aggregation. In: 2012 Intern joint conf on neural Netw (IJCNN), 2012, p. 1–8. Rabinovici, 2016, Testing and disclosures related to amyloid imaging and Alzheimer's disease: Common questions and fact sheet summary, Alzheimers Dement, 12, 510, 10.1016/j.jalz.2016.03.002 Rappelsberger, 1989, The reference problem and mapping of coherence: a simulation study, Brain Topogr, 2, 63, 10.1007/BF01128844 Rodriguez, 1999, EEG spectral profile to stage Alzheimer's disease, Clin Neurophysiol, 110, 1831, 10.1016/S1388-2457(99)00123-6 Saeys, 2007, A review of feature selection techniques in bioinformatics, Bioinformatics, 23, 2507, 10.1093/bioinformatics/btm344 Saeys Y, Abeel T, Van de Peer Y. Robust feature selection using ensemble feature selection techniques. In: Machine learning and knowledge discovery in databases, 2008, p. 313–25. Sandmann, 1996, Digital EEG with brain mapping in Alzheimer's dementia and Parkinson's disease: a prospective controlled study, Arq Neuropsiquiatr, 54, 50, 10.1590/S0004-282X1996000100009 Sanei, 2008 Schierle, 2016, Advanced imaging of tau pathology in Alzheimer Disease: New perspectives from super resolution microscopy and label-free nanoscopy, Microsco Res Techniq, 79, 677, 10.1002/jemt.22698 Sidtis, 2003, Predicting performance from functional imaging data: methods matter, Neuroimage, 20, 615, 10.1016/S1053-8119(03)00349-5 Spitzer, 1990, 212 Terry, 1994, Neuropathological changes in Alzheimer disease, Prog Brain Research, 101, 383, 10.1016/S0079-6123(08)61964-0 Trambaiolli, 2011, Improving Alzheimer's disease diagnosis with machine learning techniques, Clin EEG Neurosci, 42, 160, 10.1177/155005941104200304 Trambaiolli, 2011, Does EEG montage influence Alzheimer's disease electroclinic diagnosis?, Int J Alzheimers Dis., 2011, 761891 Van Deursen, 2008, Increased EEG gamma band activity in Alzheimer’s disease and mild cognitive impairment, J Neural Transm, 115, 1301, 10.1007/s00702-008-0083-y Vos, 2016, NIA-AA staging of preclinical Alzheimer disease: discordance and concordance of CSF and imaging biomarkers, Neurobiol Aging, 44, 1, 10.1016/j.neurobiolaging.2016.03.025