Microstructure-based modeling of crack growth in particle reinforced composites
Tài liệu tham khảo
Chawla, 1997
Chawla, 2006
Divecha, 1981, Silicon carbide reinforced aluminum – a formable composite, J Metals, 9, 12
1993, 297
Lukasak DA, Bucci RJ. Alloy Technology Div. Rep. No. KF-34, Alcoa Technical Center, Alcoa, PA; 1992.
Shang, 1988, Role of silicon carbide particles in fatigue crack growth in SiC particulate reinforced aluminum alloy composites, Mater Sci Eng, A102, 181, 10.1016/0025-5416(88)90573-3
Bonnen, 1990, 887
Sugimura, 1992, Effects of SiC content on fatigue crack growth in aluminum alloys reinforced with SiC particles, Metall Trans A, 23, 2231, 10.1007/BF02646016
Allison, 1993, Fatigue behavior of discontinuously reinforced metal matrix composites, 269
Chawla, 2004
Hashin, 1963, A variational approach to the theory of the elastic behaviour of multiphase materials, J Mech Phys Solid, 11, 127, 10.1016/0022-5096(63)90060-7
Halpin JC, Tsai SW. Environmental factors estimation in composite materials design. Air Force Materials Lab, TR 67-423; 1967.
Eshelby, 1957, The determination of the elastic field of an ellipsoidal inclusion and related problems, Proc Roy Soc Lond, A241, 376, 10.1098/rspa.1957.0133
Chawla, 1998, Effect of SiC volume fraction and particle size on the fatigue resistance of a 2080-Al/SiCp composite, Metall Mater Trans A, 29A, 2843, 10.1007/s11661-998-0325-5
Spowart, 2001, Multi-scale characterization of spatially heterogeneous systems: implications for discontinuously reinforced metal–matrix composite microstructures, Mater Sci Eng A, 307, 51, 10.1016/S0921-5093(00)01962-6
Boselli, 2001, Numerical modelling of particle distribution effects on fatigue in Al–SiCp composites, Mater Sci Eng, A300, 113, 10.1016/S0921-5093(00)01671-3
Bush, 1997, The interaction between a crack and a particle cluster, Int J Fract, 88, 215, 10.1023/A:1007469631883
Toda, 1997, Simulation of crack propagating in discontinuously reinforced metal matrix composite, Metall Mater Trans A, 28A, 2149, 10.1007/s11661-997-0173-8
Kassam, 1995, Finite element simulation to investigate interaction between crack and particulate reinforcements in metal–matrix composites, Mater Sci Eng, A203, 286, 10.1016/0921-5093(95)09828-3
Lipetzky, 1994, Crack–particle interaction in two-phase composites, Part I: Particle shape effects, Int J Fract, 65, 345, 10.1007/BF00012373
Honle, 1998, Micromechanical simulation of crack growth in WC/Co using embedded unit cells, Comput Mater Sci, 13, 56, 10.1016/S0927-0256(98)00045-7
Atkinson, 1972, The interaction between a crack and an inclusion, Int J Eng Sci, 10, 127, 10.1016/0020-7225(72)90011-0
Bruzzi, 2004, Micromechanical investigation of the fatigue crack growth behaviour of Al–SiC MMCs, Int J Fatig, 26, 795, 10.1016/j.ijfatigue.2004.01.007
Nandy, 1999, Simulation of crack propagation in alumina particle-dispersed SiC composites, J Eur Ceram Soc, 19, 329, 10.1016/S0955-2219(98)00164-2
Wulf, 1996, FE-simulation of crack paths in the real microstructure of an Al(6061)/SiC composite, Acta Mater, 44, 1765, 10.1016/1359-6454(95)00328-2
Wulf, 1993, Finite element modeling of crack propagation in ductile fracture, Comput Mater Sci, 1, 297, 10.1016/0927-0256(93)90024-H
Wulf, 1994, Simulation of experimental force–displacement curves by a finite element elimination technique, Comput Mater Sci, 3, 300, 10.1016/0927-0256(94)90145-7
Mishnaevsky, 1999, Computational mesomechanics of particle-reinforced composites, Comput Mater Sci, 16, 133, 10.1016/S0927-0256(99)00055-5
Lippmann, 1997, 3D-finite-element-modeling of microstructures with the method of multiphase elements, Comput Mater Sci, 9, 28, 10.1016/S0927-0256(97)00055-4
Chawla, 2004, Three-dimensional (3D) microstructure visualization and finite element modeling of the mechanical behavior of SiC particle reinforced aluminum composites, Scripta Mater, 51, 161, 10.1016/j.scriptamat.2004.03.043
Ganesh, 2005, Effect of particle orientation anisotropy on the tensile behavior of metal matrix composites: experiments and microstructure-based simulation, Mater Sci Eng A, 391, 342, 10.1016/j.msea.2004.09.017
Chawla, 2003, Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis, Mater Character, 49, 395, 10.1016/S1044-5803(03)00054-8
Chawla N, Sidhu RS, Ganesh VV. Three-dimensional (3D) visualization and microstructure-based modeling of deformation in particle reinforced composites. Acta Mater 2006, in press.
Shan, 2004, Digital image analysis and microstructure modeling tools for microstructure sensitive design of materials, Int J Plasticity, 20, 1347, 10.1016/j.ijplas.2003.11.003
Shan, 2001, Micromechanics of complex three-dimensional microstructures, Acta Mater, 49, 2001, 10.1016/S1359-6454(01)00093-3
Lewandowski, 1989, Effects of matrix microstructure and particle distribution on fracture of an aluminum metal matrix composite, Mater Sci Eng A, 107, 241, 10.1016/0921-5093(89)90392-4
Dirichlet, 1850, Über die reduktion der positiven quadratischen formen mit drei unbestimmten ganzen zahlen, J Reine Angew Math, 40, 209, 10.1515/crll.1850.40.209
Yang, 2001, Simulation and quantitative assessment of homogeneous and inhomogeneous particle distributions in particulate metal matrix composites, J Microsc, 201, 189, 10.1046/j.1365-2818.2001.00766.x
Tewari, 2004, Quantitative characterization of spatial clustering in three-dimensional microstructures using two-point correlation functions, Acta Mater, 52, 307, 10.1016/j.actamat.2003.09.016
Chawla, 2002, Mechanical behavior and microstructure characterization of sinter-forged SiC particle reinforced aluminum matrix composites, J Light Met, 2, 215, 10.1016/S1471-5317(03)00005-1
Torquato, 2002
Lu, 1992, Phys Rev, 45, 5530, 10.1103/PhysRevA.45.5530
James MA, Swenson D. FRANC2D/L: A crack propagation simulator for plane layered structures. Available from: http://www.mne.ksu.edu/~franc2d/.
Shang, 1989, On the particle-size dependence of fatigue-crack propagation thresholds in SiC-particulate-reinforced aluminum-alloy composites: role of crack closure and crack trapping, Acta Metall, 37, 2267, 10.1016/0001-6160(89)90154-5
Rybicki, 1977, A finite element calculation of stress intensity factors by a modified crack closure integral, Eng Fract Mech, 9, 931, 10.1016/0013-7944(77)90013-3
Erdogan, 1963, On the crack extension in plates under plane loading and transverse shear, J Basic Eng, 519, 10.1115/1.3656897
Henshell, 1975, Crack tip finite elements are unnecessary, Int J Numer Meth Eng, 9, 495, 10.1002/nme.1620090302
Wawrzynek, 1987, Interactive finite element analysis of fracture processes: an integrated approach, Theor Appl Fract Mech, 8, 137, 10.1016/0167-8442(87)90007-3
Collins, 1993
Ayyar A, Chawla N, Unpublished work, 2005.
Suresh, 2003
Paris, 1965, vol. 381
Erdogan, 1972, Fracture problems in composite materials, Eng Fract Mech, 4, 811, 10.1016/0013-7944(72)90018-5
Swenson, 1970, The stress distribution around a crack perpendicular to an interface between materials, Int J Fract, 6, 357, 10.1007/BF00182624
Goodier JN. Concentration of stress around spherical and cylindrical inclusions and flaws. Appl Mech APM-55-7 1933; 39–44.
Xu, 1994, Basic role of a hard particle in a metal matrix subjected to tensile loading, Acta Metall Mater, 42, 3717, 10.1016/0956-7151(94)90437-5
Prangnell, 1994, The deformation of discontinuously reinforced MMCs – II. The elastic response, Acta Metall Mater, 42, 3437, 10.1016/0956-7151(94)90476-6
Shen, 1994, Effective elastic response of two-phase composites, Acta Metall Mater, 42, 77, 10.1016/0956-7151(94)90050-7
Lewis, 1995, Weibull modeling of particle cracking in metal matrix composites, Acta Metall Mater, 43, 3685, 10.1016/0956-7151(95)90152-3
Watt, 1996, Effects of particle morphology and spacing on the strain fields in a plastically deforming matrix, Acta Mater, 44, 789, 10.1016/1359-6454(95)00209-X
Wang, 1993, Stress distribution in particulate-reinforced metal–matrix composites subjected to external load, Metall Trans, 24A, 197, 10.1007/BF02669616
Tao, 1994, Effects of particulate spacing distribution on internal stress and damage in MMCs, Microstruct Sci, 22, 249