Synthesis of Metastable Diamond

Springer Science and Business Media LLC - Tập 162 - Trang 61-73 - 2011
Thomas R. Anthony1
1GE Corporate Research and Development, Schenectady, United States

Tóm tắt

Diamond can be grown as an equilibrium phase from a liquid metal solution containing carbon at high pressures and high temperatures. Diamond can also be grown as a metastable phase at subatmospheric pressures and moderate temperatures from hydrocarbon gases in the presence of atomic hydrogen. Atomic hydrogen serves several critical roles in CVD diamond growth, namely: 1) stabilization of the diamond surface, 2) reduction of the size of the critical nucleus, 3) “dissolution” of carbon in the gas, 4) production of carbon solubility minimum, 5) generation of condensable carbon radicals in the gas, 6) abstraction of hydrogen from hydrocarbons attached to surface, 7) production of vacant surface sites, 8) etching of graphite, 9) suppression of polycyclic aromatic hydrocarbons. A search for substitutes for atomic hydrogen have been unsuccessful to date but several new processes that do not use atomic hydrogen are currently under study.

Tài liệu tham khảo

Henry A. Bent, “Second Law of Thermodynamics”, Oxford University Press, New York (1965). Gordon Davies, “Diamond”, Adam Hilger Ltd, Bristol (1984). F.P. Bundy, H.T. Hall, H.M. Strong, and R.H. Wentorf Jr, Nature, 176, 51–54 (1955) R.C. Devries, Ann Rev Mater Sci, 17, 161–187 (1987). W.G. Eversole, U.S. Patent No. 3030188, Apr 17, 1962. J.C. Angus, H.A. Will, and W.S. Stanko, J. Appl. Phys, 39, 2915 (1968). D.J. Poferi, N.C. Gardner and J.C. Angus, J. Appl. Phys, 44, 1428 (1973). K.E. Spear, J. Am. Ceramic Soc, 72, 171 (1989). B.V. Spitsyn, L.L. Bouilov and B.V. Deryagin, J. Cryst. Growth, 52, 219 (1981). B.B. Pate, Surf. Sci., 165, 83 (1986). J.C. Angus and C.C. Hayman, Science, 241, 913 (1988). P.K. Bachman and R. Messier, Chem & Eng News, 67, 24 (1989). P.O. Joffreau, R. Haubner and B. Lux, J. Ref Hard Metals, 7, 186 (1988). B. Lersmacher, H. Lydtin, W.F. Knippenberg and A.W. Moore, Carbon, 5, 205 (1967). W.J. Van Den Hoek and W. Klessens, Carbon, 13, 429 (1975). Ian Chen, J. Appl. Phys, 64, 3742 (1988). S.J. Harris, A.M. Weiner and T.A Perry, Appl. Phys. Letters, 53, 1605 (1988). M. Frenklach and K.E. Spear, J. Mater. Res., 3, 133 (1988). W.L. Hsu, 34th Nat Symp AVS, TF-WeA1, (November 1987). B.V. Deryagin and D.V. Fedoseev, “Growth of Diamond and Graphite from the Vapor Phase”, Izd Nauka., Moscow, USSR, 1977. M. Frenklach, J. Appl. Phys, 65, 5142 (1989). D.E. Rosner and J.P. Strakey, J. Phys. Chem, 77, 690 (1973). D.E. Rosner and H.D. Allendorf, J. Phys. Chem, 75, 308 (1971). T. Kawato and K. Kondo, J. Appl. Phys., 26, 1429 (1987). C.P. Chang, D.L. Flamm, D.E. Ibbotson and J. Mucha, J. Appl. Phys, 63, 1744 (1988). Y. Saito, K. Sato, H. Tanaka, K. Fujita and S. Matsuda, J. Mater. Sci, 23, 842 (1986). Y. Hirose and Y. Terasawa, Japan J. Appl. Phys, 25, L519 (1986). A.R. Patel and K.A Cherian, Indian Journal of Pure & Appl Phys, 19, 803 (1981). J.A. Brinkman, C.J. Meechan and H.M. Dieckamp, US Patent #3,142,539 (1964). J.A. Brinkman, C.J. Meechan and H.M.Dieckamp, US Patent #3,175,885 (1965). R.A. Rudder, J.B. Posthill, G.C. Hudson, M.J. Mantini and R.J. Markunas, 1989 Diamond Technology Initiative Symposium, Paper W16, (July 11–13, 1989).