A novel surface water index using local background information for long term and large-scale Landsat images

Linrong Li1, Hongjun Su1, Qian Du2, Taixia Wu1
1School of Earth Sciences and Engineering, Hohai University, Nanjing 211100, China
2Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS 39762, USA

Tài liệu tham khảo

Acharya, T.D., Lee, D.H., Yang, I.T., Lee, J.K., 2016. Identification of Water Bodies in a Landsat 8 OLI Image Using a J48 Decision Tree 1–16. Acharya, 2018, Evaluation of water indices for surface water extraction in a landsat 8 scene of Nepal, Sens. (Switzerland), 18, 1 Bhagat, 2011, Use of Landsat ETM+ data for delineation of water bodies in hilly zones, J. Hydroinformatics, 13, 661, 10.2166/hydro.2010.018 Boland, D., 1976. Trophic classification of lakes using LANDSAT-1 (ERTS-1) multispectral scanner data. Chen, 2014, Global land cover mapping at 30m resolution: A POKbased operational approach, Int. J. Photogr. Remote Sens., 103, 7, 10.1016/j.isprsjprs.2014.09.002 Crist, 1985, A TM Tasseled Cap equivalent transformation for reflectance factor data, Remote Sens. Environ., 17, 301, 10.1016/0034-4257(85)90102-6 Cui, 2020, Remote sensing of chlorophyll a concentration in turbid coastal waters based on a global optical water classification system, ISPRS J. Photogramm. Remote Sens., 163, 187, 10.1016/j.isprsjprs.2020.02.017 Donchyts, 2016, Earth’s surface water change over the past 30 years, Nat. Clim. Chang., 6, 810, 10.1038/nclimate3111 Downing, J.A., Duarte, C.M., 2009. Abundance and Size Distribution of Lakes, Ponds and Impoundments, in: Likens, G.E.B.T.-E. of I.W. (Ed.), Encyclopedia of Inland Waters. Elsevier, Oxford, pp. 469–478. Feng, 2016, A global, high-resolution (30-m) inland water body dataset for 2000: first results of a topographic–spectral classification algorithm, Int. J. Digit. Earth, 9, 113, 10.1080/17538947.2015.1026420 Feyisa, 2014, Automated Water Extraction Index: a new technique for surface water mapping using Landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029 Fisher, 2016, Comparing Landsat water index methods for automated water classification in eastern Australia, Remote Sens. Environ., 175, 167, 10.1016/j.rse.2015.12.055 Gstaiger, 2012, Multi-sensoral and automated derivation of inundated areas using TerraSAR-X and ENVISAT ASAR data, Int. J. Remote Sens. – INT J Remote SENS, 33, 7291, 10.1080/01431161.2012.700421 Isikdogan, 2017, Surface water mapping by deep learning, IEEE J Sel. Top. Appl. Earth Obs. Remote Sens., 10, 4909, 10.1109/JSTARS.2017.2735443 Jiang, W., He, G., Long, T., Ni, Y., Liu, H., n.d. Multilayer Perceptron Neural Network for Surface Water Extraction in Landsat 8 OLI Satellite Images 1–22. Jiang, 2020, Surface water map of China for 2015 (SWMC-2015) derived from Landsat 8 satellite imagery, Remote Sens. Lett., 11, 265, 10.1080/2150704X.2019.1708501 Jones, J.W., 2019. Improved Automated Detection of Subpixel-Scale Inundation — Revised Dynamic Surface Water Extent (DSWE) Partial Surface Water Tests. Klein, 2017, Global WaterPack – A 250 m resolution dataset revealing the daily dynamics of global inland water bodies, Remote Sens. Environ., 198, 345, 10.1016/j.rse.2017.06.045 Li, 2015, An automatic approach for urban land-cover classification from Landsat-8 OLI data, Int. J. Remote Sens., 36, 5983, 10.1080/01431161.2015.1109726 Li, 2013, A Comparison of land surface water mapping using the normalized difference water index from TM ETM plus and ALI, Remote Sens., 5, 5530, 10.3390/rs5115530 Liu, Q., Huang, C., Shi, Z., 2020. Probabilistic River Water Mapping from Landsat-8 Using the Support Vector Machine Method. Luo, X., Xie, H., Xu, X., Pan, H., Tong, X., 2016. A hierarchical processing method for subpixel surface water mapping from highly heterogeneous urban environments using Landsat OLI data. Int. Geosci. Remote Sens. Symp. 2016-Novem, 6221–6224. Mao, 2020, National wetland mapping in China: A new product resulting from object-based and hierarchical classification of Landsat 8 OLI images, ISPRS J. Photogramm. Remote Sens., 164, 11, 10.1016/j.isprsjprs.2020.03.020 McFEETERS, 1996, The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, Int. J. Remote Sens., 17, 1425, 10.1080/01431169608948714 Misra, 2018, Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery Shallow water bathymetry mapping using Support Vector Machine (SVM) technique and multispectral imagery, Int. J. Remote Sens., 39, 4431, 10.1080/01431161.2017.1421796 Mueller, 2016, Water observations from space: Mapping surface water from 25 years of Landsat imagery across Australia, Remote Sens. Environ., 174, 341, 10.1016/j.rse.2015.11.003 Otsu, 1979, A threshold selection method from Gray-level histograms, Syst. Man Cybern. IEEE Trans., 9, 62, 10.1109/TSMC.1979.4310076 Ouma, 2006, A water index for rapid mapping of shoreline changes of five East African Rift Valley lakes: An empirical analysis using Landsat TM and ETM+ data, Int. J. Remote Sens., 27, 3153, 10.1080/01431160500309934 Pekel, 2016, High-resolution mapping of global surface water and its long-term changes, Nature, 540, 418, 10.1038/nature20584 Pickens, 2020, Remote Sensing of Environment Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series, Remote Sens. Environ., 243, 10.1016/j.rse.2020.111792 Rishikeshan, 2018, An automated mathematical morphology driven algorithm for water body extraction from remotely sensed images, ISPRS J. Photogramm. Remote Sens., 146, 11, 10.1016/j.isprsjprs.2018.08.014 Rouse, J., Haas, R., Schell, J., Deering, D., Harlan, J., 1974. Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. Greenbelt, MD: NASA/GSFC Type III, Final Report. Sahoo, 2011, Reconciling the global terrestrial water budget using satellite remote sensing, Remote Sens. Environ., 115, 1850, 10.1016/j.rse.2011.03.009 Shen, 2010, Water body extraction from Landsat ETM+ imagery using adaboost algorithm, 2010 18th Int. Conf Geoinformatics, Geoinformatics, 2010, 1 Sivanpillai, 2020, Rapid flood inundation mapping by differencing water indices from pre- and post-flood Landsat images, Front. Earth Sci., 10.1007/s11707-020-0818-0 Song, 2014, Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: a review, ISPRS J. Photogramm. Remote Sens., 92, 26, 10.1016/j.isprsjprs.2014.03.001 Sun, 2012, Comparison and improvement of methods for identifying waterbodies in remotely sensed imagery, Int. J. Remote Sens., 33, 6854, 10.1080/01431161.2012.692829 Sun, W., Du, B., Xiong, S., 2017. Quantifying Sub-Pixel Surface Water Coverage in Urban Environments Using Low-Albedo Fraction from Landsat Imagery. Su, H., Yu, Y., Wu, Z., Du, Q., to be published. “Random Subspace-Based k-Nearest Class Collaborative Representation for Hyperspectral Image Classification,” in IEEE Transactions on Geoscience and Remote Sensing. Tong, 2018, An approach for flood monitoring by the combined use of Landsat 8 optical imagery and COSMO-SkyMed radar imagery, ISPRS J. Photogramm. Remote Sens., 136, 144, 10.1016/j.isprsjprs.2017.11.006 Torbick, 2013, Mapping inland lake water quality across the Lower Peninsula of Michigan using Landsat TM imagery, Int. J. Remote Sens., 34, 7607, 10.1080/01431161.2013.822602 Tulbure, 2013, Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011, ISPRS J. Photogramm. Remote Sens., 79, 44, 10.1016/j.isprsjprs.2013.01.010 Vorosmarty, 2000, Global water resources: vulnerability from climate change and population growth, Science (80-., ). 289, 284, 10.1126/science.289.5477.284 Wang, 2018, A robust Multi-Band Water Index (MBWI) for automated extraction of surface water from Landsat 8 OLI imagery, Int. J. Appl. Earth Obs. Geoinf., 68, 73, 10.1016/j.jag.2018.01.018 Work. E.A., Gilmer. D.S., 1976. Utilization of Satellite Data for Inventorying Prairie Ponds and Lakes. Photogramm. Eng. Remote Sensing 42. Xiong, 2018, Subpixel surface water extraction (SSWE) using Landsat 8 OLI data, Water (Switzerland), 10, 1 Xu, 2006, Modification of Normalized Difference Water Index (NDWI) to enhance open water features in remotely sensed imagery, Int. J. Remote Sens., 27, 3025, 10.1080/01431160600589179 Yamazaki, 2015, Development of a global ~90m water body map using multi-temporal Landsat images, Remote Sens. Environ., 171, 337, 10.1016/j.rse.2015.10.014 Zha, 2003, Use of normalized difference built-up index in automatically mapping urban areas from TM imagery, Int. J. Remote Sens., 24, 583, 10.1080/01431160304987 Zhou, 2017, Open surface water mapping algorithms: a comparison of water-related spectral indices and sensors, Water (Switzerland), 9