Subduction zone slip variability during the last millennium, south-central Chile

Quaternary Science Reviews - Tập 175 - Trang 112-137 - 2017
Tina Dura1, Benjamin P. Horton1,2,3, Marco Cisternas4, Lisa L. Ely5, Isabel Hong1, Alan R. Nelson6, Robert L. Wesson5, Jessica E. Pilarczyk7, Andrew C. Parnell8, Daria Nikitina9
1Sea Level Research, Department of Marine and Coastal Science, Rutgers University, New Brunswick, NJ, USA
2Asian School of the Environment, Nanyang Technological University, Singapore
3Earth Observatory of Singapore, Nanyang Technological University, Singapore
4Escuela de Ciencias del Mar, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
5Department of Geological Sciences, Central Washington University, Ellensburg, WA, USA
6Geologic Hazards Science Center, U.S. Geological Survey, Golden, CO, USA
7Division of Marine Science, School of Ocean Science and Technology, University of Southern Mississippi, Stennis Space Center, MS, USA
8School of Mathematical Sciences & Insight Centre for Data Analytics, University College Dublin, Ireland
9Department of Earth and Space Sciences, West Chester University, West Chester, PA, USA

Tài liệu tham khảo

Allen, 2000, Morphodynamics of holocene salt marshes: a review sketch from the Atlantic and Southern North sea coasts of Europe, Quat. Sci. Rev., 19, 1155, 10.1016/S0277-3791(99)00034-7 Angermann, 1999, Space-geodetic estimation of the Nazca-South America Euler vector, Earth Planet. Sci. Lett., 171, 329, 10.1016/S0012-821X(99)00173-9 Atwater, 1997, vol. 1576, 1 Atwater, 1992, Net late Holocene emergence despite earthquake-induced submergence, South-Central Chile, 15/16, 77 Audin, 2008, Upper plate deformation and seismic barrier in front of Nazca subduction zone: the Chololo Fault System and active tectonics along the Coastal Cordillera, Southern Peru, Tectonophysics, 459, 174, 10.1016/j.tecto.2007.11.070 Barrientos, 2007, Earthquakes in Chile, 263 Bartsch-Winkler, 1993, Evidence for late Holocene relative sea-level fall from reconnaissance stratigraphical studies in an area of earthquake-subsided intertidal deposits, Isla Chiloé, Southern Chile, 91 Beck, 1998, Source characteristics of historical earthquakes along central Chile subduction zone, J. S. Am. Earth Sci., 11, 115, 10.1016/S0895-9811(98)00005-4 Bilek, 2010, Invited review paper: seismicity along the South American subduction zone: review of large earthquakes, tsunamis, and subduction zone complexity, Tectonophysics, 495, 2, 10.1016/j.tecto.2009.02.037 Birks, 1986, Numerical zonation, comparison and correlation of Quaternary pollen-stratigraphical data, 743 Birks, 1992, vol. 102, 7 Bondevik, 2005, Evidence for three North sea tsunamis at the Shetland Islands between 8000 and 1500 years ago, Quat. Sci. Rev., 24, 1757, 10.1016/j.quascirev.2004.10.018 Briggs, 2014, Uplift and subsidence reveal a non-persistent megathrust rupture boundary (Sitkinak Island, Alaska), Geophys. Res. Lett., 41, 2289, 10.1002/2014GL059380 Bronk Ramsey, 2008, Depositional models for chronological records: quaternary science reviews, 27, 42 Buck, 1996 Carvajal, 2016, The effects on tsunami hazard assessment in Chile of assuming earthquake scenarios with spatially uniform slip, Pure Appl. Geophys., 173, 3693, 10.1007/s00024-016-1332-x Carvajal, 2017, Source of the 1730 Chilean earthquake from historical records: implications for the future tsunami hazard on the coast of Metropolitan Chile, J. Geophys. Res. Solid Earth, 10.1002/2017JB014063 Cifuentes, 1989, The 1960 Chilean earthquakes, J. Geophys. Res., 94, 665, 10.1029/JB094iB01p00665 Cisternas, 2012, Amending and complicating Chile’s seismic catalog with the Santiago earthquake of 7 August 1580, J. S. Am. Earth Sci., 33, 102, 10.1016/j.jsames.2011.09.002 Cisternas, 2001, Effects of historical land use on sediment yield from a lacustrine watershed in Central Chile, Earth Surf. Process. Landforms, 26, 63, 10.1002/1096-9837(200101)26:1<63::AID-ESP157>3.0.CO;2-J Cisternas, 2005, Predecessors of the giant 1960 Chile earthquake, Nature, 437, 404, 10.1038/nature03943 Cisternas, 2017, Unusual geologic evidence for coeval seismic shaking and tsunamis shows variability in earthquake size and recurrence in the area of the giant 1960 Chile earthquake, Mar. Geol., 385, 101, 10.1016/j.margeo.2016.12.007 Cisternas, 2017, Exploring the historical earthquakes preceding the giant 1960 Chile earthquake in a time-dependent seismogenic zone, Bull. Seismol. Soc. Am, 10.1785/0120170103 Cochran, 2007, Detection of Large, Holocene Earthquakes Using Diatom Analysis of Coastal Sedimentary Sequences, Wellington, New Zealand, Quaternary Science Reviews, vol. 26, 1129, 10.1016/j.quascirev.2007.01.008 Dawson, 1996, The diatom biostratigraphy of tsunami sediments: examples from recent and middle Holocene events, Phys. Chem. Earth, 21, 87, 10.1016/S0079-1946(97)00015-3 Dawson, 2000, The sedimentology of middle Holocene tsunami facies in Northern Sutherland, Scotland, UK, Mar. Geol., 170, 69, 10.1016/S0025-3227(00)00066-9 Darwin, 1839 Denys, 1991 de Moralda, 1780 Dragert, 2001, A silent slip event on the deeper Cascadia subduction interface, Science, 292, 1525, 10.1126/science.1060152 Dura, 2015, Coastal evidence for Holocene subduction-zone earthquakes and tsunamis in central Chile, Quat. Sci. Rev., 113, 93, 10.1016/j.quascirev.2014.10.015 Dura, 2016, The application of diatoms to reconstruct the history of subduction zone earthquakes and tsunamis, Earth-Science Rev., 152, 181, 10.1016/j.earscirev.2015.11.017 Dura, 2016, The role of holocene relative sea-level change in preserving records of subduction zone earthquakes, Curr. Clim. Change Rep., 2, 86, 10.1007/s40641-016-0041-y Ely, 1992, Accuracy of post-bomb 137 Cs and 14 C in dating fluvial deposits, Quat. Res., 38, 196, 10.1016/0033-5894(92)90056-O Ely, 2014, Five centuries of tsunamis and land-level changes in the overlapping rupture area of the 1960 and 2010 Chilean earthquakes, Geology, G35830 Farías, 2010, Land-level changes produced by the Mw 8.8 2010 Chilean earthquake, Science, 329, 916, 10.1126/science.1192094 1839 Garrett, 2015, Reconstructing paleoseismic deformation, 2: 1000 years of great earthquakes at Chucalén, south central Chile, Quat. Sci. Rev., 113, 112, 10.1016/j.quascirev.2014.10.010 Garrett, 2013, Reconstructing paleoseismic deformation, 1: modern analogues from the 1960 and 2010 Chilean great earthquakes, Quat. Sci. Rev., 75, 11, 10.1016/j.quascirev.2013.04.007 Goto, 2011, New insights of tsunami hazard from the 2011 Tohoku-oki event, Mar. Geol., 290, 46, 10.1016/j.margeo.2011.10.004 Haberland, 2009, Structure of the seismogenic zone of the southcentral Chilean margin revealed by local earthquake traveltime tomography, J. Geophys. Res. : Solid Earth, 114 Hamilton, 2005, Late Holocene relative sea-level changes and the earthquake deformation cycle around upper Cook Inlet, Alaska, Quat. Sci. Rev., 24, 1479, 10.1016/j.quascirev.2004.11.003 Hartley, 1986, A check-list of the freshwater, brackish and marine diatoms of the British Isles and adjoining coastal waters, J. Marine Biol. Assoc. U.K., 66, 531, 10.1017/S0025315400042235 Hawkes, 2011, Coastal subsidence in Oregon, USA, during the giant Cascadia earthquake of AD 1700, Quat. Sci. Rev., 30, 364, 10.1016/j.quascirev.2010.11.017 Hemphill-Haley, 1995, Diatom evidence for earthquake-induced subsidence and tsunami 300 years ago in southern coastal Washington, Geol. Soc. Am. Bull., 107, 367, 10.1130/0016-7606(1995)107<0367:DEFEIS>2.3.CO;2 Hemphill-Haley, 1996, Diatoms as an aid in identifying late-Holocene tsunami deposits, The Holocene, 6, 439, 10.1177/095968369600600406 Hogg, 2013, SHCAL13 Southern Hemisphere calibration, 0–50,000 Years CAL BP, Radiocarbon, 55, 10.2458/azu_js_rc.55.16783 Hong, 2017, A 600-year-long stratigraphic record of tsunamis in south-central Chile, The Holocene, 27, 39, 10.1177/0959683616646191 Horton, 2006, Quantifying holocene sea level change using intertidal foraminifera: lessons from the British Isles, Cushman foundation for foraminiferal research, Spec. Publ., 97 Horton, 2011, Sedimentology and paleontology of a tsunami deposit accompanying the great Chilean earthquake of February 2010, Mar. Micropaleontol., 79, 132, 10.1016/j.marmicro.2011.02.001 Horton, 2017, Microfossil measures of rapid sea-level rise: timing of response of two microfossil groups to a sudden tidal-flooding experiment in Cascadia, Geology, 10.1130/G38832.1 Isla, 2012, The evolution of the bío bío delta and the coastal plains of the Arauco Gulf, bío bío region: the holocene sea-level Curve of Chile, J. Coast. Res., 28, 102, 10.2112/JCOASTRES-D-10-00035.1 Jara-Munoz, 2015, Segmentation of the 2010 Maule Chile earthquake rupture from a joint analysis of uplifted marine terraces and seismic-cycle deformation patterns, Quat. Sci. Rev., 113, 171, 10.1016/j.quascirev.2015.01.005 Kelleher, 1972, Rupture zones of large South American earthquakes and some predictions, J. Geophys. Res., 77, 2087, 10.1029/JB077i011p02087 Kemp, 2013, Radiocarbon dating of plant macrofossils from tidal-marsh sediment, vol. 14, 370 Kempf, 2017, Coastal lake sediments reveal 5500 years of tsunami history in south central Chile, Quat. Sci. Rev., 161, 99, 10.1016/j.quascirev.2017.02.018 Krammer, 1986, Bacillarophyceae 2/1. Naviculaceae, 1 Krammer, 1988, Bacillarophyceae 2/2. Basillariaceae, Epithemiaceae, Surirellaceae, 1 Krammer, 1991, Bacillarophyceae 2/3. Centrales, Fragilariaceae, Eunotiaceae, 1 Krammer, 1991, Bacillarophyceae 2/4. Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema, vol. 2, 1 Lange-Bertalot, 2000, Vol. 7 Lay, 2011, Earthquakes: a Chilean surprise, Nature, 471, 174, 10.1038/471174a Lomnitz, 1970, Major earthquakes and tsunamis in Chile during the period 1535 to 1955, Geologische Rundschau, 59, 938, 10.1007/BF02042278 Lin, 2013, Coseismic and postseismic slip associated with the 2010 Maule Earthquake, Chile: characterizing the Arauco Peninsula Barrier Effect, J. Geophys. Res. Solid Earth, 118, 3142e3159, 10.1002/jgrb.50207 Lomnitz, 2004, Major earthquakes of Chile: a historical survey, 1535-1960, Seismol. Res. Lett., 75, 368, 10.1785/gssrl.75.3.368 Lorito, 2011, Limited overlap between the seismic gap and coseismic slip of the great 2010 Chile earthquake, Nat. Geosci., 4, 173, 10.1038/ngeo1073 Melnick, 2009, Segmentation of megathrust rupture zones from fore-arc deformation patterns over hundreds to millions of years, Arauco peninsula, Chile, J. Geophys. Res. Solid Earth, 114, 10.1029/2008JB005788 Melnick, 2012, Estimating coseismic coastal uplift with an intertidal mussel: calibration for the 2010 Maule Chile earthquake (Mw = 8.8), Quat. Sci. Rev., 42, 29, 10.1016/j.quascirev.2012.03.012 Melnick, 2017, The super-interseismic phase of the megathrust earthquake cycle in Chile, Geophys. Res. Lett., 44, 784, 10.1002/2016GL071845 Meltzner, 2012, Persistent termini of 2004-and 2005-like ruptures of the Sunda megathrust, J. Geophys. Res. Solid Earth, 117, 10.1029/2011JB008888 Métois, 2012, Interseismic coupling, segmentation and mechanical behavior of the central Chile subduction zone, J. Geophys. Res. Solid Earth, 117, B03406, 10.1029/2011JB008736 Moernaut, 2007, Giant earthquakes in south-central Chile revealed by Holocene mass-wasting events in Lake Puyehue, Sediment. Geol., 195, 239, 10.1016/j.sedgeo.2006.08.005 Moernaut, 2014, Lacustrine turbidites as a tool for quantitative earthquake reconstruction: new evidence for a variable rupture mode in South Central Chile, J. Geophys. Res. Solid Earth, 119, 1607, 10.1002/2013JB010738 Moreno, 2009, Impact of megathrust geometry on inversion of coseismic slip from geodetic data: application to the 1960 Chile earthquake, Geophys. Res. Lett., 36, L16310, 10.1029/2009GL039276 Moreno, 2011, Heterogeneous plate locking in the South–Central Chile subduction zone: building up the next great earthquake, Earth Planet. Sci. Lett., 305, 413, 10.1016/j.epsl.2011.03.025 Moreno, 2012, Toward understanding tectonic control on the Mw 8.8 2010 Maule Chile earthquake, Earth Planet. Sci. Lett., 321–322, 152, 10.1016/j.epsl.2012.01.006 Munsell soil color charts, 1975 Nanayama, 2003, Unusually large earthquakes inferred from tsunami deposits along the Kuril trench, Nature, 424, 660, 10.1038/nature01864 Nelson, 1996, Identifying coseismic subsidence in tidal-wetland stratigraphic sequences at the Cascadia subduction zone of western North America, J. Geophys. Res., 101, 6115, 10.1029/95JB01051 Nelson, 2009, Fragmentary evidence of great-earthquake subsidence during Holocene emergence, Valdivia Estuary, South Central Chile, Bull. Seismol. Soc. Am., 99, 71, 10.1785/0120080103 Nelson, 2015, Tsunami recurrence in the eastern Alaska-Aleutian arc: a Holocene stratigraphic record from Chirikof Island, Alaska, Geosphere, 11, 1172, 10.1130/GES01108.1 Nentwig, 2015, Reconstructing the tsunami record in Tirúa, Central Chile beyond the historical record with quartz-based SAR-OSL, Quaternary Geochronol., 30, 299, 10.1016/j.quageo.2015.05.020 Peltier, 2002, On eustatic sea level history: last Glacial Maximum to Holocene, Quat. Sci. Rev., 21, 377, 10.1016/S0277-3791(01)00084-1 Peltier, 2004, Global glacial isostasy and the surface of the ice-age Earth: the ICE-5G (VM2) model and GRACE, Annu. Rev. Earth Planet. Sci., 32, 111, 10.1146/annurev.earth.32.082503.144359 Perfettini, 2010, Seismic and aseismic slip on the Central Peru megathrust, Nature, 465, 78, 10.1038/nature09062 Pilarczyk, 2014, Microfossils from coastal environments as indicators of paleo-earthquakes, tsunamis and storms, Palaeogeogr. Palaeoclimatol. Palaeoecol., 413, 144, 10.1016/j.palaeo.2014.06.033 Plafker, 1965, Tectonic deformation associated with the 1964 Alaska earthquake, Science, 148, 1675, 10.1126/science.148.3678.1675 Plafker, 1972, Alaskan earthquake of 1964 and Chilean earthquake of 1960: implications for arc tectonics, J. Geophys. Res., 77, 901, 10.1029/JB077i005p00901 Plafker, 1970, Mechanism of the Chilean earthquakes of may 21 and 22, 1960, Geol. Soc. Am. Bull., 81, 1001, 10.1130/0016-7606(1970)81[1001:MOTCEO]2.0.CO;2 Pollitz, 2006, Post-seismic relaxation following the great 2004 Sumatra-Andaman earthquake on a compressible self-gravitating Earth, Geophys. J. Int., 167, 397, 10.1111/j.1365-246X.2006.03018.x Rebolledo, 2005, 20th century fluctuations in the abundance of siliceous microorganisms preserved in the sediments of the Puyuhuapi channel (44 S), Chile, Revista Chilena de Historia Natural, 78, 469, 10.4067/S0716-078X2005000300009 Rebolledo, 2011, Siliceous productivity changes in Gulf of Ancud sediments (42° S, 72° W), southern Chile, over the last∼ 150 years, Continental Shelf Res., 31, 356, 10.1016/j.csr.2010.06.015 Rehak, 2008, Morphotectonic segmentation of an active forearc, 37-41_ S, Chile, Geomorphology, 94, 98, 10.1016/j.geomorph.2007.05.002 Reid, 1910 Rivera, 2000 Roy, 2015, Glacial isostatic adjustment, relative sea level history and mantle viscosity: reconciling relative sea level model predictions for the US East coast with geological constraints, Geophys. J. Int., 201, 1156, 10.1093/gji/ggv066 Satake, 2007, Long-term perspectives on giant earthquakes and tsunamis at subduction zones, Annu. Rev. Earth Planet. Sci., 35, 349, 10.1146/annurev.earth.35.031306.140302 Sawai, 2001, Episodic emergence in the past 3000 years at the Akkeshi Estuary, Hokkaido, northern Japan, Quat. Res., 56, 231, 10.1006/qres.2001.2258 Sawai, 2004, Transient uplift after a 17th-century earthquake along the Kuril subduction zone, Science, 306, 1918, 10.1126/science.1104895 Sawai, 2008, Marine incursions of the past 1500 years and evidence of tsunamis at Suijin-numa, a coastal lake facing the Japan Trench, The Holocene, 18, 517, 10.1177/0959683608089206 Sawai, 2009, Diatom assemblages in tsunami deposits associated with the 2004 Indian ocean tsunami at Phra Thong Island, Thailand, Mar. Micropaleontol., 73, 70, 10.1016/j.marmicro.2009.07.003 Sawai, 2012, Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology, Geophys. Res. Lett., 39, 10.1029/2012GL053692 Segall, 2010 Shennan, 2006, Coseismic and pre-seismic subsidence associated with great earthquakes in Alaska, Quat. Sci. Rev., 25, 1, 10.1016/j.quascirev.2005.09.002 Shennan, 2009, Multi-segment earthquakes and tsunami potential of the Aleutian megathrust, Quat. Sci. Rev., 28, 7, 10.1016/j.quascirev.2008.09.016 Shennan, 2014, Late Holocene great earthquakes in the eastern part of the Aleutian megathrust, Quat. Sci. Rev., 84, 86, 10.1016/j.quascirev.2013.11.010 Shennan, 2016, Detection limits of tidal-wetland sequences to identify variable rupture modes of megathrust earthquakes, Quat. Sci. Rev., 150, 1, 10.1016/j.quascirev.2016.08.003 Sieh, 2008, Earthquake supercycles inferred from sea-level changes recorded in the corals of west Sumatra, Science, 322, 1674, 10.1126/science.1163589 Simons, 2011, The 2011 magnitude 9.0 Tohoku-Oki earthquake: mosaicking the megathrust from seconds to centuries, Science, 332, 1421, 10.1126/science.1206731 Smith, 2004, The Holocene Storegga Slide tsunami in the United Kingdom, Quat. Sci. Rev., 23/24, 2291, 10.1016/j.quascirev.2004.04.001 Subarya, 2006, Plate-boundary deformation associated with the great Sumatra–Andaman earthquake, Nature, 440, 46, 10.1038/nature04522 Szczuciński, 2012, Sediment sources and sedimentation processes of 2011 Tohoku-oki tsunami deposits on the Sendai Plain, Japan — insights from diatoms, nannoliths and grain size distribution, Sediment. Geol., 282, 40, 10.1016/j.sedgeo.2012.07.019 Taylor, 2008, Rupture across arc segment and plate boundaries in the 1 April 2007 Solomons earthquake, Nat. Geosci., 1, 253, 10.1038/ngeo159 Thatcher, 1990, Order and diversity in the modes of circum-pacific earthquake recurrence, J. Geophys. Res. Solid Earth, 95, 2609, 10.1029/JB095iB03p02609 Udías, 2012, The large Chilean historical earthquakes of 1647, 1657, 1730, and 1751 from contemporary documents, Bull. Seismol. Soc. Am., 102, 1639, 10.1785/0120110289 Vigny, 2011, The 2010 Mw 8.8 Maule megathrust earthquake of central Chile, monitored by GPS, Science, 332, 1417, 10.1126/science.1204132 Vos, 2007, Methodological aspects of paleo-ecological diatom research in coastal areas of the Netherlands, Neth. J. Geosciences/Geologie en Mijnbouw Vos, 1993, Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands; methodological aspects, 285 Wang, 2007, 540 Wang, 2003, A revised dislocation model of interseismic deformation of the Cascadia subduction zone, J. Geophys. Res. Solid Earth, 108, 10.1029/2001JB001227 Wang, 2012, Deformation cycles of subduction earthquakes in a viscoelastic Earth, Nature, 484, 327, 10.1038/nature11032 Wang, 2013, Heterogeneous rupture in the great Cascadia earthquake of 1700 inferred from coastal subsidence estimates, J. Geophys. Res. Solid Earth, 118, 2460, 10.1002/jgrb.50101 Wesson, 2015, Vertical deformation through a complete seismic cycle at Isla Santa Maria, Chile, Nat. Geosci., 8, 547, 10.1038/ngeo2468 Witter, 2001, Pacific storms, El Nino and tsunamis: competing mechanisms for sand deposition in a coastal marsh, Euchre Creek, Oregon, J. Coast. Res., 563 Witter, 2003, Great Cascadia earthquakes and tsunamis of the past 6700 years, Coquille River estuary, Southern Coastal Oregon, Geol. Soc. Am. Bull., 115, 1289, 10.1130/B25189.1 Witter, 2014, Little late Holocene strain accumulation and release on the Aleutian megathrust below the Shumagin Islands, Alaska, Geophys. Res. Lett., 41, 2359, 10.1002/2014GL059393