Structural Basis for Light-dependent Signaling in the Dimeric LOV Domain of the Photosensor YtvA

Journal of Molecular Biology - Tập 373 - Trang 112-126 - 2007
Andreas Möglich1, Keith Moffat1,2
1Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, 929 East 57th Street, GCIS W107A, Chicago, IL 60637, USA
2Consortium for Advanced Radiation Sources (CARS), University of Chicago, 929 East 57th Street, GCIS W107A, Chicago, IL 60637, USA

Tài liệu tham khảo

Taylor, 1999, PAS domains: internal sensors of oxygen, redox potential, and light, Microbiol. Mol. Biol. Rev., 63, 479, 10.1128/MMBR.63.2.479-506.1999 Hefti, 2004, The PAS fold. A redefinition of the PAS domain based upon structural prediction, Eur. J. Biochem., 271, 1198, 10.1111/j.1432-1033.2004.04023.x Huala, 1997, Arabidopsis NPH1: a protein kinase with a putative redox-sensing domain, Science, 278, 2120, 10.1126/science.278.5346.2120 Crosson, 2003, The LOV domain family: photoresponsive signaling modules coupled to diverse output domains, Biochemistry, 42, 2, 10.1021/bi026978l Losi, 2004, The bacterial counterparts of plant phototropins, Photochem Photobiol. Sci., 3, 566, 10.1039/b400728j Briggs, 2002, Phototropins 1 and 2: versatile plant blue-light receptors, Trends Plant Sci., 7, 204, 10.1016/S1360-1385(02)02245-8 Banerjee, 2005, Plant blue-light receptors, Planta, 220, 498, 10.1007/s00425-004-1418-z Christie, 1998, Arabidopsis NPH1: a flavoprotein with the properties of a photoreceptor for phototropism, Science, 282, 1698, 10.1126/science.282.5394.1698 Matsuoka, 2005, Blue light-regulated molecular switch of Ser/Thr kinase in phototropin, Proc. Natl Acad. Sci. USA, 102, 13337, 10.1073/pnas.0506402102 Jones, 2007, Mutational analysis of phototropin 1 provides insights into the mechanism underlying LOV2 signal transmission, J. Biol. Chem., 282, 6405, 10.1074/jbc.M605969200 Christie, 2002, Phototropin LOV domains exhibit distinct roles in regulating photoreceptor function, Plant J., 32, 205, 10.1046/j.1365-313X.2002.01415.x Salomon, 2004, Dimerization of the plant photoreceptor phototropin is probably mediated by the LOV1 domain, FEBS Letters, 572, 8, 10.1016/j.febslet.2004.06.081 Salomon, 2000, Photochemical and mutational analysis of the FMN-binding domains of the plant blue light receptor, phototropin, Biochemistry, 39, 9401, 10.1021/bi000585+ Salomon, 2001, An optomechanical transducer in the blue light receptor phototropin from Avena sativa, Proc. Natl Acad. Sci. USA, 98, 12357, 10.1073/pnas.221455298 Swartz, 2001, The photocycle of a flavin-binding domain of the blue light photoreceptor phototropin, J. Biol. Chem., 276, 36493, 10.1074/jbc.M103114200 Crosson, 2001, Structure of a flavin-binding plant photoreceptor domain: insights into light-mediated signal transduction, Proc. Natl Acad. Sci. USA, 98, 2995, 10.1073/pnas.051520298 Crosson, 2002, Photoexcited structure of a plant photoreceptor domain reveals a light-driven molecular switch, Plant Cell, 14, 1067, 10.1105/tpc.010475 Fedorov, 2003, Crystal structures and molecular mechanism of a light-induced signaling switch: the Phot-LOV1 domain from Chlamydomonas reinhardtii, Biophys. J., 84, 2474, 10.1016/S0006-3495(03)75052-8 Harper, 2003, Structural basis of a phototropin light switch, Science, 301, 1541, 10.1126/science.1086810 Harper, 2004, Disruption of the LOV-Jalpha helix interaction activates phototropin kinase activity, Biochemistry, 43, 16184, 10.1021/bi048092i Losi, 2002, First evidence for phototropin-related blue-light receptors in prokaryotes, Biophys. J., 82, 2627, 10.1016/S0006-3495(02)75604-X Akbar, 2001, New family of regulators in the environmental signaling pathway which activates the general stress transcription factor sigma(B) of Bacillus subtilis, J. Bacteriol., 183, 1329, 10.1128/JB.183.4.1329-1338.2001 Gaidenko, 2006, The blue-light receptor YtvA acts in the environmental stress signaling pathway of Bacillus subtilis, J. Bacteriol., 188, 6387, 10.1128/JB.00691-06 Avila-Perez, 2006, Blue light activates the sigmaB-dependent stress response of Bacillus subtilis via YtvA, J. Bacteriol., 188, 6411, 10.1128/JB.00716-06 Aravind, 2000, The STAS domain—a link between anion transporters and antisigma-factor antagonists, Curr. Biol., 10, R53, 10.1016/S0960-9822(00)00335-3 Buttani, 2006, Blue news: NTP binding properties of the blue-light sensitive YtvA protein from Bacillus subtilis, FEBS Letters, 580, 3818, 10.1016/j.febslet.2006.06.007 Buttani, 2007, NTP-binding properties of the blue-light receptor YtvA and effects of the E105L mutation, Eur. Biophys. J., 36, 831, 10.1007/s00249-007-0155-1 Losi, 2003, Listening to the blue: the time-resolved thermodynamics of the bacterial blue-light receptor YtvA and its isolated LOV domain, Photochem. Photobiol. Sci., 2, 759, 10.1039/B301782F Zoltowski, 2007, Conformational switching in the fungal light sensor Vivid, Science, 316, 1054, 10.1126/science.1137128 Eisenberg, 1986, Solvation energy in protein folding and binding, Nature, 319, 199, 10.1038/319199a0 Buttani, 2007, Conformational analysis of the blue-light sensing protein YtvA reveals a competitive interface for LOV-LOV dimerization and interdomain interactions, Photochem. Photobiol. Sci., 6, 41, 10.1039/B610375H Losi, 2005, Mutational effects on protein structural changes and interdomain interactions in the blue-light sensing LOV protein YtvA, Photochem. Photobiol., 81, 1145, 10.1562/2005-05-25-RA-541 Losi, 2004, Tryptophan fluorescence in the Bacillus subtilis phototropin-related protein YtvA as a marker of interdomain interaction, Photochem. Photobiol., 80, 150, 10.1562/2004-03-17-RC-116.1 Corchnoy, 2003, Intramolecular proton transfers and structural changes during the photocycle of the LOV2 domain of phototropin 1, J. Biol. Chem., 278, 724, 10.1074/jbc.M209119200 Nakasone, 2006, Kinetic measurement of transient dimerization and dissociation reactions of Arabidopsis phototropin 1 LOV2 domain, Biophys. J., 91, 645, 10.1529/biophysj.106.084772 Key, 2007, Structure of the redox sensor domain of Azotobacter vinelandii NifL at atomic resolution: signaling, dimerization, and mechanism, Biochemistry, 46, 3614, 10.1021/bi0620407 Gong, 1998, Structure of a biological oxygen sensor: a new mechanism for heme-driven signal transduction, Proc. Natl Acad. Sci. USA, 95, 15177, 10.1073/pnas.95.26.15177 Key, 2005, Crystal structures of deoxy and CO-bound bjFixLH reveal details of ligand recognition and signaling, Biochemistry, 44, 4627, 10.1021/bi047942r Hao, 2002, Structure-based mechanism of O2 sensing and ligand discrimination by the FixL heme domain of Bradyrhizobium japonicum, Biochemistry, 41, 12952, 10.1021/bi020144l Key, 2007, Time-resolved crystallographic studies of the heme domain of the oxygen sensor fixl: structural dynamics of ligand rebinding and their relation to signal transduction, Biochemistry, 46, 4706, 10.1021/bi700043c Kurokawa, 2004, A redox-controlled molecular switch revealed by the crystal structure of a bacterial heme PAS sensor, J. Biol. Chem., 279, 20186, 10.1074/jbc.M314199200 Park, 2004, Insights into signal transduction involving PAS domain oxygen-sensing heme proteins from the X-ray crystal structure of Escherichia coli Dos heme domain (Ec DosH), Biochemistry, 43, 2738, 10.1021/bi035980p Otwinowski, 1997, Processing of X-ray diffraction data collected in oscillation mode, Methods Enzymol., 276, 307, 10.1016/S0076-6879(97)76066-X McCoy, 2005, Likelihood-enhanced fast translation functions, Acta Crystallog. sect. D, 61, 458, 10.1107/S0907444905001617 Emsley, 2004, Coot: model-building tools for molecular graphics, Acta Crystallog. sect. D, 60, 2126, 10.1107/S0907444904019158 Murshudov, 1997, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallog. sect. D, 53, 240, 10.1107/S0907444996012255 Schomaker, 1968, On the rigid-body motion of molecules in crystals, Acta Crystallog. sect. B, 24, 63, 10.1107/S0567740868001718 Laskowski, 1993, PROCHECK: a program to check the stereochemical quality of protein structures, J. Appl. Crystallog., 26, 283, 10.1107/S0021889892009944 Brünger, 1998, Crystallography & NMR system: a new software suite for macromolecular structure determination, Acta Crystallog. sect. D, 54, 905, 10.1107/S0907444998003254 Koradi, 1996, MOLMOL: a program for display and analysis of macromolecular structures, J. Mol. Graph., 14, 51, 10.1016/0263-7855(96)00009-4 Holm, 1996, Mapping the protein universe, Science, 273, 595, 10.1126/science.273.5275.595 Kabsch, 1983, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577, 10.1002/bip.360221211 Krissinel, E. & Henrick, K. (2007). Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. In the press (http://dx.doi.org/10.1016/j.jmb.2007.05.022). 1994, The CCP4 suite: programs for protein crystallography, Acta Crystallog. sect. D, 50, 760, 10.1107/S0907444994003112 Ralston, 1993 Bevington, 2003