The optimization landscape of hybrid quantum–classical algorithms: From quantum control to NISQ applications
Tài liệu tham khảo
Amaro, 2022, Filtering variational quantum algorithms for combinatorial optimization, Quantum Science and Technology, 7, 10.1088/2058-9565/ac3e54
Anschuetz, 2021
Anschuetz, 2022
Arenz, 2020, Drawing together control landscape and tomography principles, Physical Review A, 102, 10.1103/PhysRevA.102.042207
Arrasmith, 2021, Effect of barren plateaus on gradient-free optimization, Quantum, 5, 558, 10.22331/q-2021-10-05-558
Arrasmith, 2021
Arute, 2020, Hartree-fock on a superconducting qubit quantum computer, Science, 369, 1084, 10.1126/science.abb9811
Assion, 1998, Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses, Science, 282, 919, 10.1126/science.282.5390.919
Banchi, 2020, Convex optimization of programmable quantum computers, Npj Quantum Information, 6, 42, 10.1038/s41534-020-0268-2
Beltrani, 2007, Photonic reagent control of dynamically homologous quantum systems, Journal of Chemical Physics, 126, 10.1063/1.2434177
Beltrani, 2011, Bounds on the curvature at the top and bottom of the transition probability landscape, Journal of Physics B-Atomic Molecular and Optical Physics, 44, 10.1088/0953-4075/44/15/154009
Beltrani, 2011, Exploring the top and bottom of the quantum control landscape, Journal of Chemical Physics, 134, 10.1063/1.3589404
Benedetti, 2021, Hardware-efficient variational quantum algorithms for time evolution, Physical Review Research, 3, 10.1103/PhysRevResearch.3.033083
Benedetti, 2019
Bharti, 2021
Bishop, 2006
Brandao, 2018
Brif, 2010, Control of quantum phenomena: past, present and future, New Journal of Physics, 12, 10.1088/1367-2630/12/7/075008
Broers, 2021
Bultrini, 2022
Cao, 2019, Quantum chemistry in the age of quantum computing, Chemical Reviews, 119, 10856, 10.1021/acs.chemrev.8b00803
Cerezo, 2021, Variational quantum algorithms, Nature Reviews Physics, 3, 625, 10.1038/s42254-021-00348-9
Cerezo, 2021, Higher order derivatives of quantum neural networks with barren plateaus, Quantum Science and Technology, 6, 10.1088/2058-9565/abf51a
Cerezo, 2021, Cost function dependent barren plateaus in shallow parametrized quantum circuits, Nature Communications, 12, 1791, 10.1038/s41467-021-21728-w
Chen, 2021, An end-to-end trainable hybrid classical-quantum classifier, Machine Learning: Science and Technology, 2
Daniel, 2003, Deciphering the reaction dynamics underlying optimal control laser fields, Science, 299, 536, 10.1126/science.1078517
Degen, 2017, Quantum sensing, Reviews of Modern Physics, 89, 10.1103/RevModPhys.89.035002
Dominy, 2008, Exploring families of quantum controls for generating unitary transformations, Journal of Physics. A. Mathematical and Theoretical, 41, 10.1088/1751-8113/41/20/205305
Dong, 2010, Quantum control theory and applications: a survey, IET Control Theory & Applications, 4, 2651, 10.1049/iet-cta.2009.0508
Donovan, 2013, Exploring the impact of constraints in quantum optimal control through a kinematic formulation, Chemical Physics, 425, 46, 10.1016/j.chemphys.2013.07.019
Donovan, 2014, Local topology at limited resource induced suboptimal traps on the quantum control landscape, Journal of Mathematical Chemistry, 52, 407, 10.1007/s10910-013-0269-x
Donovan, 2015, Systematically altering the apparent topology of constrained quantum control landscapes, Journal of Mathematical Chemistry, 53, 718, 10.1007/s10910-014-0453-7
Dou, 2022
Endo, 2021, Hybrid quantum-classical algorithms and quantum error mitigation, Journal of the Physical Society of Japan, 90, 10.7566/JPSJ.90.032001
Farhi, 2014
Farhi, 2019
Fontana, 2020
Friedrich, 2022
Glaser, 2015, Training Schrodinger’s cat: quantum optimal control strategic report on current status, visions and goals for research in Europe, European Physical Journal D, 69, 279, 10.1140/epjd/e2015-60464-1
Grant, 2019, An initialization strategy for addressing barren plateaus in parametrized quantum circuits, Quantum, 3, 214, 10.22331/q-2019-12-09-214
Harrow, 2009, Random quantum circuits are approximate 2-designs, Communications in Mathematical Physics, 291, 257, 10.1007/s00220-009-0873-6
Ho, 2006, Why do effective quantum controls appear easy to find?, Journal of Photochemistry and Photobiology A-Chemistry, 180, 226, 10.1016/j.jphotochem.2006.03.038
Hocker, 2014, Characterization of control noise effects in optimal quantum unitary dynamics, Physical Review A, 90, 10.1103/PhysRevA.90.062309
Holmes, 2022, Connecting ansatz expressibility to gradient magnitudes and barren plateaus, PRX Quantum, 3, 10.1103/PRXQuantum.3.010313
Hsieh, 2010, Optimal control landscape for the generation of unitary transformations with constrained dynamics, Physical Review A, 81, 10.1103/PhysRevA.81.062352
Huang, 1983, On the controllability of quantum-mechanical systems, Journal of Mathematical Physics, 24, 2608, 10.1063/1.525634
Judson, 1992, Teaching lasers to control molecules, Physical Review Letters, 68, 1500, 10.1103/PhysRevLett.68.1500
Kim, 2021, Universal effectiveness of high-depth circuits in variational eigenproblems, Physical Review Research, 3, 10.1103/PhysRevResearch.3.023203
Larocca, 2021
Larocca, 2021
Lee, 2021
Liu, 2022
Liu, 2022
Liu, 2022
Lubasch, 2020, Variational quantum algorithms for nonlinear problems, Physical Review A, 101, 10.1103/PhysRevA.101.010301
Magann, 2021, From pulses to circuits and back again: A quantum optimal control perspective on variational quantum algorithms, PRX Quantum, 2, 10.1103/PRXQuantum.2.010101
Magann, 2021, Digital quantum simulation of molecular dynamics and control, Physical Review Research, 3, 10.1103/PhysRevResearch.3.023165
Marrero, 2021
McClean, 2018, Barren plateaus in quantum neural network training landscapes, Nature Communications, 9, 4812, 10.1038/s41467-018-07090-4
Mele, 2022
Mitarai, 2018, Quantum circuit learning, Physical Review A, 98, 10.1103/PhysRevA.98.032309
Nakaji, 2021, Expressibility of the alternating layered ansatz for quantum computation, Quantum, 5, 434, 10.22331/q-2021-04-19-434
Patti, 2021, Entanglement devised barren plateau mitigation, Physical Review Research, 3, 10.1103/PhysRevResearch.3.033090
Pesah, 2021, Absence of Barren Plateaus in quantum convolutional neural networks, Physical Review X, 11, 10.1103/PhysRevX.11.041011
Plekhanov, 2022, Variational quantum amplitude estimation, Quantum, 6, 670, 10.22331/q-2022-03-17-670
Poggiali, 2018, Optimal control for one-qubit quantum sensing, Physical Review X, 8, 10.1103/PhysRevX.8.021059
Preskill, 2018, Quantum computing in the NISQ era and beyond, Quantum, 2, 79, 10.22331/q-2018-08-06-79
Rabitz, 2004, Quantum optimally controlled transition landscapes, Science, 303, 1998, 10.1126/science.1093649
Rabitz, 2005, Landscape for optimal control of quantum-mechanical unitary transformations, Physical Review A, 72, 10.1103/PhysRevA.72.052337
Rabitz, 2006, Optimal control landscapes for quantum observables, Journal of Chemical Physics, 124, 10.1063/1.2198837
Rad, 2022
Renes, 2004, Symmetric informationally complete quantum measurements, Journal of Mathematical Physics, 45, 2171, 10.1063/1.1737053
Resch, 2019
Rivera-Dean, 2021
Riviello, 2014, Searching for quantum optimal control fields in the presence of singular critical points, Physical Review A, 90, 10.1103/PhysRevA.90.013404
Riviello, 2015, Searching for quantum optimal controls under severe constraints, Physical Review A, 91, 10.1103/PhysRevA.91.043401
Riviello, 2017, Searching for an optimal control in the presence of saddles on the quantum-mechanical observable landscape, Physical Review A, 95, 10.1103/PhysRevA.95.063418
Rothman, 2005, Quantum observable homotopy tracking control, Journal of Chemical Physics, 123, 10.1063/1.2042456
Rudolph, 2021
Sharma, 2020
Skolik, 2021, Layerwise learning for quantum neural networks, Quantum Machine Intelligence, 3, 10.1007/s42484-020-00036-4
Stilck Franca, 2021, Limitations of optimization algorithms on noisy quantum devices, Nature Physics, 17, 1221?1227
Temme, 2017, Error mitigation for short-depth quantum circuits, Physical Review Letters, 119, 10.1103/PhysRevLett.119.180509
Uvarov, 2021, On barren plateaus and cost function locality in variational quantum algorithms, Journal of Physics A: Mathematical and Theoretical, 54, 10.1088/1751-8121/abfac7
Verdon, 2019
Volkoff, 2021, Large gradients via correlation in random parameterized quantum circuits, Quantum Science and Technology, 6, 10.1088/2058-9565/abd891
Waks, 2002, Quantum cryptography with a photon turnstile, Nature, 420, 762, 10.1038/420762a
Wang, 2021
Wierichs, 2020, Avoiding local minima in variational quantum eigensolvers with the natural gradient optimizer, Physical Review Research, 2, 10.1103/PhysRevResearch.2.043246
Wiersema, 2020, Exploring entanglement and optimization within the Hamiltonian variational Ansatz, PRX Quantum, 1, 10.1103/PRXQuantum.1.020319
Wu, 2015, Limits of optimal control yields achievable with quantum controllers, Physical Review A, 91, 10.1103/PhysRevA.91.042327
Wu, 2010, Critical landscape topology for optimization on the symplectic group, Journal of Optimization Theory and Applications, 145, 387, 10.1007/s10957-009-9641-1
Wu, 2011, Role of controllability in optimizing quantum dynamics, Physical Review A, 83, 10.1103/PhysRevA.83.062306
Wu, 2012, Singularities of quantum control landscapes, Physical Review A, 86, 10.1103/PhysRevA.86.013405
Wu, 2008, Control landscapes for observable preparation with open quantum systems, Journal of Mathematical Physics, 49, 10.1063/1.2883738
Wu, 2008, Characterization of the critical submanifolds in quantum ensemble control landscapes, Journal of Physics. A. Mathematical and Theoretical, 41, 10.1088/1751-8113/41/1/015006
Wu, 2019, Inherently trap-free convex landscapes for fully quantum optimal control, Journal of Mathematical Chemistry, 57, 2154, 10.1007/s10910-019-01059-4
Xu, 2021, Generalizable control for multiparameter quantum metrology, Physical Review A, 103, 10.1103/PhysRevA.103.042615
You, 2022
You, 2021
Zhang, 2020
Zhang, 2022