Progress in development of electrolytes for magnesium batteries

Energy Storage Materials - Tập 21 - Trang 136-153 - 2019
Ramasubramonian Deivanayagam1, Brian J. Ingram2,3, Reza Shahbazian-Yassar1
1Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL 60607, United States
2Joint Center for Energy Storage Research, Argonne National Laboratory, Lemont, IL 60439, United States
3Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, IL 60439, United States

Tài liệu tham khảo

Janek, 2016, A solid future for battery development, Nat. Energy, 1, 16141, 10.1038/nenergy.2016.141 Van Noorden, 2014, The rechargeable revolution: a better battery, Nature, 507, 26, 10.1038/507026a Chawla, 2019, Recent advances in air-battery chemistries, Mater. Today Chem., 12, 324, 10.1016/j.mtchem.2019.03.006 Choi, 2016, Promise and reality of post-lithium-ion batteries with high energy densities, Nat. Rev. Mater., 1, 16013, 10.1038/natrevmats.2016.13 Slater, 2013, Sodium-ion batteries, Adv. Funct. Mater., 23, 947, 10.1002/adfm.201200691 Kim, 2014, High-capacity anode materials for sodium-ion batteries, Chem. Eur. J., 20, 11980, 10.1002/chem.201402511 Muñoz-Márquez, 2017, Na-ion batteries for large scale Applications: a review on anode materials and solid electrolyte interphase formation, Adv. Energy Mater., 1700463, 1700463, 10.1002/aenm.201700463 Canepa, 2017, Odyssey of multivalent cathode materials: open questions and future challenges, Chem. Rev., 117, 4287, 10.1021/acs.chemrev.6b00614 Muldoon, 2014, Quest for nonaqueous multivalent secondary batteries: magnesium and beyond, Chem. Rev., 114, 11683, 10.1021/cr500049y Muldoon, 2017, Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed, Angew. Chem. Int. Ed., 56, 12064, 10.1002/anie.201700673 Saha, 2014, Rechargeable magnesium battery: current status and key challenges for the future, Prog. Mater. Sci., 66, 1, 10.1016/j.pmatsci.2014.04.001 Yoo, 2013, Mg rechargeable batteries: an on-going challenge, Energy Environ. Sci., 6, 2265, 10.1039/c3ee40871j Bucur, 2018 Aurbach, 2003, Nonaqueous magnesium electrochemistry and its application in secondary batteries, Chem. Rec., 3, 61, 10.1002/tcr.10051 Tutusaus, 2017, Study of electrochemical phenomena observed at the Mg metal/electrolyte interface, ACS Energy Lett., 2, 224, 10.1021/acsenergylett.6b00549 Yoo, 2017, Degradation mechanisms of magnesium metal anodes in electrolytes based on (CF3SO2)2N– at high current densities, Langmuir, 10.1021/acs.langmuir.7b01051 Song, 2016, Mapping the challenges of magnesium battery, J. Phys. Chem. Lett., 7, 1736, 10.1021/acs.jpclett.6b00384 Lipson, 2016, Practical stability limits of magnesium electrolytes, J. Electrochem. Soc., 163, A2253, 10.1149/2.0451610jes Huie, 2015, Cathode materials for magnesium and magnesium-ion based batteries, Coord. Chem. Rev., 287, 15, 10.1016/j.ccr.2014.11.005 Zhao-Karger, 2019, Beyond intercalation Chemistry for rechargeable Mg batteries: a short review and perspective, Front. Chem., 6, 1, 10.3389/fchem.2018.00656 Massé, 2015, Beyond Li-ion: electrode materials for sodium and magnesium-ion batteries, Sci. China Mater., 58, 715, 10.1007/s40843-015-0084-8 Crowe, 2016, Solid state cathode materials for secondary magnesium-ion batteries that are compatible with magnesium metal anodes in water-free electrolyte, J. Solid State Chem., 242, 102, 10.1016/j.jssc.2016.04.011 Bucur, 2015, Confession of a magnesium battery, J. Phys. Chem. Lett., 6, 3578, 10.1021/acs.jpclett.5b01219 Mao, 2018, A critical review of cathodes for rechargeable Mg batteries, Chem. Soc. Rev., 47, 8804, 10.1039/C8CS00319J Aurbach, 2002, Electrolyte solutions for rechargeable magnesium batteries based on organomagnesium chloroaluminate complexes, J. Electrochem. Soc., 149, A115, 10.1149/1.1429925 Xu, 2014, Electrolytes and interphases in Li-ion batteries and beyond, Chem. Rev., 114, 11503, 10.1021/cr500003w Keyzer, 2016, Mg(PF6)2-Based electrolyte systems: understanding electrolyte-electrode interactions for the development of Mg-ion batteries, J. Am. Chem. Soc., 138, 8682, 10.1021/jacs.6b04319 Shterenberg, 2017, Hexafluorophosphate-based solutions for Mg batteries and the importance of chlorides, Langmuir, 10.1021/acs.langmuir.7b01609 Wang, 2017, Electrochemical intercalation of Mg2+ into anhydrous and hydrated crystalline tungsten oxides, Langmuir, 33, 9314, 10.1021/acs.langmuir.7b00705 Truong, 2017, Unravelling the surface structure of MgMn2O4 cathode materials for rechargeable magnesium-ion battery, Chem. Mater., 29, 6245, 10.1021/acs.chemmater.7b01252 Verrelli, 2018, On the strange case of divalent ions intercalation in V2O5, J. Power Sources, 407, 162, 10.1016/j.jpowsour.2018.08.024 Xie, 2015, Transition-metal-free magnesium-based batteries activated by anionic insertion into fluorinated graphene nanosheets, Adv. Funct. Mater., 25, 6519, 10.1002/adfm.201503010 Gregory, 1990, Nonaqueous electrochemistry of magnesium, J. Electrochem. Soc., 137, 775, 10.1149/1.2086553 Aurbach, 2000, Prototype systems for rechargeable magnesium batteries, Nature, 407, 724, 10.1038/35037553 Imamura, 2003, Characterization of magnesium-intercalated V2O5/carbon composites, Solid State Ionics, 161, 173, 10.1016/S0167-2738(03)00267-4 Sakamoto, 2001, Constitution of Grignard reagent RMgCI in tetrahydrofuran, Org. Lett., 3, 1793, 10.1021/ol010048x Pan, 2015, A Lewis acid-free and phenolate-based magnesium electrolyte for rechargeable magnesium batteries, Chem. Commun., 51, 6214, 10.1039/C5CC01225B Pan, 2016, MgCl2 : the key ingredient to improve chloride containing electrolytes for rechargeable magnesium-ion batteries, J. Electrochem. Soc., 163, A1672, 10.1149/2.0821608jes Kim, 2011, Structure and compatibility of a magnesium electrolyte with a sulphur cathode, Nat. Commun., 2, 427, 10.1038/ncomms1435 Liebenow, 2000, The electrodeposition of magnesium using solutions of organomagnesium halides, amidomagnesium halides and magnesium organoborates, Electrochem. Commun., 2, 641, 10.1016/S1388-2481(00)00094-1 Zhao-Karger, 2013, Bisamide based non-nucleophilic electrolytes for rechargeable magnesium batteries, RSC Adv., 3, 16330, 10.1039/c3ra43206h Doe, 2014, Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries, Chem. Commun., 50, 243, 10.1039/C3CC47896C He, 2017, MgCl2/AlCl3 electrolytes for reversible Mg deposition/stripping: electrochemical conditioning or not?, J. Mater. Chem. A., 5, 12718, 10.1039/C7TA01769C Xu, 2019, Improving a Mg/S battery with YCl3 additive and magnesium polysulfide, Adv. Sci., 6, 6, 10.1002/advs.201800981 Ha, 2014, Magnesium(II) bis(trifluoromethane sulfonyl) imide-based electrolytes with wide electrochemical windows for rechargeable magnesium batteries, ACS Appl. Mater. Interfaces., 6, 4063, 10.1021/am405619v Gao, 2018, Thermodynamics and kinetics of sulfur cathode during discharge in MgTFSI2 –DME electrolyte, Adv. Mater., 30, 1704313, 10.1002/adma.201704313 Li, 2017, Reducing Mg anode overpotential via ion conductive surface layer formation by iodine additive, Adv. Energy Mater., 1701728, 1701728 Shterenberg, 2015, Evaluation of (CF3SO2)2N− (TFSI) based electrolyte solutions for Mg batteries, J. Electrochem. Soc., 162, 7118, 10.1149/2.0161513jes Pan, 2016, The role of MgCl2 as a Lewis base in ROMgCl-MgCl2 electrolytes for magnesium-ion batteries, ChemSusChem, 9, 595, 10.1002/cssc.201501557 Mohtadi, 2012, Magnesium borohydride: from hydrogen storage to magnesium battery, Angew. Chem. Int. Ed., 51, 9780, 10.1002/anie.201204913 Carter, 2014, Boron clusters as highly stable magnesium-battery electrolytes, Angew. Chem. Int. Ed., 53, 3173, 10.1002/anie.201310317 Tutusaus, 2015, An efficient halogen-free electrolyte for use in rechargeable magnesium batteries, Angew. Chem. Int. Ed., 54, 7900, 10.1002/anie.201412202 Hahn, 2018, Enhanced stability of the carba-closo-dodecaborate anion for high-voltage battery electrolytes through rational design, J. Am. Chem. Soc., 140, 11076, 10.1021/jacs.8b05967 Zhao-Karger, 2017, A new class of non-corrosive, highly efficient electrolytes for rechargeable magnesium batteries, J. Mater. Chem. A., 5, 10815, 10.1039/C7TA02237A Luo, 2019, A stable, non-corrosive perfluorinated pinacolatoborate Mg electrolyte for rechargeable Mg batteries, Angew. Chem. Int. Ed., 58, 1 Yagi, 2014, A concept of dual-salt polyvalent-metal storage battery, J. Mater. Chem. A., 2, 1144, 10.1039/C3TA13668J Zhang, 2015, Dual-salt Mg-based batteries with conversion cathodes, Adv. Funct. Mater., 25, 7300, 10.1002/adfm.201503639 Tian, 2018, High-capacity Mg-organic batteries based on nanostructured rhodizonate salts activated by Mg-Li dual-salt electrolyte, ACS Nano, 12, 3424, 10.1021/acsnano.7b09177 NuLi, 2005, Reversible deposition and dissolution of magnesium from BMIMBF4 ionic liquid, Electrochem. Commun., 7, 1105, 10.1016/j.elecom.2005.07.013 Wang, 2006, Mixed ionic liquids as electrolyte for reversible deposition and dissolution of magnesium, Surf. Coating. Technol., 201, 3783, 10.1016/j.surfcoat.2006.03.020 Cheek, 2008, Studies on the electrodeposition of magnesium in ionic liquids, J. Electrochem. Soc., 155, D91, 10.1149/1.2804763 Yoshimoto, 2010, Mixed electrolyte consisting of ethylmagnesiumbromide with ionic liquid for rechargeable magnesium electrode, J. Power Sources, 195, 2096, 10.1016/j.jpowsour.2009.10.073 Kakibe, 2010, Optimization of cation structure of imidazolium-based ionic liquids as ionic solvents for rechargeable magnesium batteries, Electrochem. Commun., 12, 1630, 10.1016/j.elecom.2010.09.012 Kakibe, 2012, Binary ionic liquid electrolytes containing organo-magnesium complex for rechargeable magnesium batteries, J. Power Sources, 203, 195, 10.1016/j.jpowsour.2011.10.127 Vardar, 2014, Electrochemistry of magnesium electrolytes in ionic liquids for secondary batteries, ACS Appl. Mater. Interfaces., 6, 18033, 10.1021/am5049064 Kar, 2016, Ionic liquid electrolytes for reversible magnesium electrochemistry, Chem. Commun., 52, 4033, 10.1039/C5CC09324D Su, 2016, Magnesium borohydride-based electrolytes containing 1-butyl-1-methylpiperidinium bis(trifluoromethyl sulfonyl)imide ionic liquid for rechargeable magnesium batteries, J. Electrochem. Soc., 163, D682, 10.1149/2.0631613jes Huie, 2016, Ionic liquid hybrids: progress toward non-corrosive electrolytes with high-voltage oxidation stability for magnesium-ion based batteries, Electrochim. Acta., 219, 267, 10.1016/j.electacta.2016.09.107 Cho, 2017, Effect of 1-allyl-1-methylpyrrolidinium chloride addition to ethylmagnesium bromide electrolyte on a rechargeable magnesium battery, Electrochim. Acta., 231, 379, 10.1016/j.electacta.2017.02.062 Pan, 2017, Ionic liquid as an effective additive for rechargeable magnesium batteries, J. Electrochem. Soc., 164, A902, 10.1149/2.1551704jes Gao, 2019, Prototype rechargeable magnesium batteries using ionic liquid electrolytes, J. Power Sources, 423, 52, 10.1016/j.jpowsour.2019.03.049 Zhang, 2017, Novel design concepts of efficient Mg-ion electrolytes toward high-performance magnesium-selenium and magnesium-sulfur batteries, Adv. Energy Mater., 201602055, 1602055, 10.1002/aenm.201602055 Lapidus, 2014, Solvation structure and energetics of electrolytes for multivalent energy storage, Phys. Chem. Chem. Phys., 16, 10.1039/C4CP03015J Okoshi, 2013, Theoretical analysis on de-solvation of lithium, sodium, and magnesium cations to organic electrolyte solvents, J. Electrochem. Soc., 160, A2160, 10.1149/2.074311jes Levi, 2009, A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries, J. Electroceram., 22, 13, 10.1007/s10832-007-9370-5 Rong, 2015, Materials design rules for multi-valent ion mobility in intercalation structures, Chem. Mater., 27, 6016, 10.1021/acs.chemmater.5b02342 Wan, 2015, Mg desolvation and intercalation mechanism at the Mo6S8 Chevrel phase surface, Chem. Mater., 27, 5932, 10.1021/acs.chemmater.5b01907 Liu, 2015, Spinel compounds as multivalent battery cathodes: a systematic evaluation based on ab initio calculations, Energy Environ. Sci., 8, 964, 10.1039/C4EE03389B Sai Gautam, 2016, Impact of intermediate sites on bulk diffusion barriers: Mg intercalation in Mg2Mo3O8, J. Mater. Chem. A., 4, 17643, 10.1039/C6TA07804D Xu, 2015, Secondary batteries with multivalent ions for energy storage, Sci. Rep., 5, 14120, 10.1038/srep14120 Liang, 2015, Interlayer-expanded molybdenum disulfide nanocomposites for electrochemical magnesium storage, Nano Lett., 15, 2194, 10.1021/acs.nanolett.5b00388 Gautam, 2015, First-principles evaluation of multi-valent cation insertion into orthorhombic V 2 O 5, Chem. Commun., 51, 13619, 10.1039/C5CC04947D Rajput, 2015, The coupling between stability and ion pair formation in magnesium electrolytes from first-principles quantum mechanics and classical molecular dynamics, J. Am. Chem. Soc., 137, 3411, 10.1021/jacs.5b01004 Canepa, 2015, Understanding the initial stages of reversible Mg deposition and stripping in inorganic nonaqueous electrolytes, Chem. Mater., 27, 3317, 10.1021/acs.chemmater.5b00389 Yang, 1986, Ionic conductivity in complexes of poly ( ethylene oxide ) and MgCl2, J. Elecrochem. Soc. Electrochem. Sci. Technol., 133, 1380, 10.1149/1.2108891 Patrick, 1986, Novel solid state polymeric batteries, Solid State Ionics, 18–19, 1063, 10.1016/0167-2738(86)90309-7 Martins, 1990, Factors affecting the conductivity of divalent polymeric electrolytes, J. Power Sources, 32, 107, 10.1016/S0378-7753(12)80001-2 Chen, 1991, Magnesium ion conducting polymeric electrolytes, Chem. Mater., 3, 771, 10.1021/cm00017a003 Noto, 1998, A novel electrolytic complex based on δ-MgCl 2 and poly (ethylene glycol) 400, Electrochim. Acta., 43, 1225, 10.1016/S0013-4686(97)10023-8 Di Noto, 2002, Electrical spectroscopy studies of lithium and magnesium polymer electrolytes based on PEG400, J. Phys. Chem. B., 106, 11139, 10.1021/jp020771k Di Noto, 2002, Synthesis and characterization of [ PEG400- alt -DEOS ]/(?-MgCl2)0.2597 complex, Macromol. Chem. Phys., 203, 1201, 10.1002/1521-3935(200206)203:9<1201::AID-MACP1201>3.0.CO;2-1 Liebenow, 1998, A novel type of magnesium ion conducting polymer electrolyte, Electrochim. Acta., 43, 1253, 10.1016/S0013-4686(97)10026-3 Liebenow, 2000, Electrochemical and structural investigations on solutions of organomagnesium bromide in polymeric ether, Solid State Ionics, 136–137, 1211, 10.1016/S0167-2738(00)00586-5 Jiang, 1997, Studies of some poly(vinylidene fluoride) electrolytes, Electrochim. Acta., 42, 2667, 10.1016/S0013-4686(97)00005-4 Girish Kumar, 1999, Reversibility of Mg/Mg2+ couple in a gel polymer electrolyte, Electrochim. Acta., 44, 2663, 10.1016/S0013-4686(98)00388-0 Girish Kumar, 2000, A gel polymer electrolyte of magnesium triflate, Solid State Ionics, 128, 203, 10.1016/S0167-2738(00)00276-9 Yoshimoto, 2002, Ionic conductance behavior of polymeric electrolytes containing magnesium salts and their application to rechargeable batteries, Solid State Ionics, 152–153, 259, 10.1016/S0167-2738(02)00308-9 Yoshimoto, 2003, Rechargeable magnesium batteries with polymeric gel electrolytes containing magnesium salts, Electrochim. Acta., 48, 2317, 10.1016/S0013-4686(03)00221-4 Saito, 2003, Influence of PEG-borate ester as a Lewis acid on ionic conductivity of polymer electrolyte containing Mg-salt, J. Electrochem. Soc., 150, A477, 10.1149/1.1559066 Saito, 2003, Interaction between the Lewis acid group of a borate ester and various anion species in a polymer electrolyte containing Mg salt, J. Phys. Chem. B., 107, 11608, 10.1021/jp034040b Saito, 2003, Investigation of the effect of Lewis acid on ionic conductivity of polymer electrolyte containing Mg salt, J. Electrochem. Soc., 150, A726, 10.1149/1.1572151 Chusid, 2003, Solid-state rechargeable magnesium batteries, Adv. Mater., 15, 627, 10.1002/adma.200304415 Aurbach, 2001, A short review on the comparison between Li battery systems and rechargeable Mg battery technology, J. Power Sources, 97–98, 28, 10.1016/S0378-7753(01)00585-7 Perera, 2004, Ionic conductivity of a gel polymer electrolyte based on Mg(ClO4)2 and polyacrylonitrile (PAN), Mater. Res. Bull., 39, 1745, 10.1016/j.materresbull.2004.03.027 Vickraman, 2004, Polyvinylidenefluoride (PVdF) based novel polymer electrolytes complexed with Mg(ClO4)2, Eur. Phys. J. Appl. Phys., 28, 265 Oh, 2004, Preparation and characterization of gel polymer electrolytes for solid state magnesium batteries, Electrochim. Acta., 50, 903, 10.1016/j.electacta.2004.01.099 Yoshimoto, 2005, A novel polymeric gel electrolyte systems containing magnesium salt with ionic liquid, Electrochim. Acta, 50, 3866, 10.1016/j.electacta.2005.02.036 Morita, 2005, Ionic conductance behavior of polymeric gel electrolyte containing ionic liquid mixed with magnesium salt, J. Power Sources, 139, 351, 10.1016/j.jpowsour.2004.07.028 Pandey, 2009, Experimental investigations of an ionic-liquid-based, magnesium ion conducting, polymer gel electrolyte, J. Power Sources, 187, 627, 10.1016/j.jpowsour.2008.10.112 Kumar, 2011, Ionic liquid mediated magnesium ion conduction in poly(ethylene oxide) based polymer electrolyte, Electrochim. Acta., 56, 3864, 10.1016/j.electacta.2011.02.035 Evans, 1987, Electrochemical measurement of transference numbers in polymer electrolytes, Polymer (Guildf), 28, 2324, 10.1016/0032-3861(87)90394-6 Du, 2019, A crosslinked polytetrahydrofuran-borate-based polymer electrolyte enabling wide-working-temperature-range rechargeable magnesium batteries, Adv. Mater., 1805930, 1 Croce, 2001, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta., 46, 2457, 10.1016/S0013-4686(01)00458-3 Croce, 1998, Nanocomposite polymer electrolytes for lithium batteries, Nature, 394, 456, 10.1038/28818 Kumar, 1999, Polymer-ceramic composite electrolytes: conductivity and thermal history effects, Solid State Ionics, 124, 239, 10.1016/S0167-2738(99)00148-4 Dissanayake, 2006, Thermal and electrical properties of solid polymer electrolyte PEO 9 Mg(ClO4)2 incorporating nano-porous Al 2O3 filler, Solid State Ionics, 177, 343, 10.1016/j.ssi.2005.10.031 Pandey, 2009, Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide, J. Power Sources, 190, 563, 10.1016/j.jpowsour.2009.01.057 Pandey, 2010, Electrical and electrochemical properties of magnesium ion conducting composite gel polymer electrolytes, J. Phys. D Appl. Phys., 43, 10.1088/0022-3727/43/25/255501 Pandey, 2011, Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application, J. Solid State Electrochem., 15, 2253, 10.1007/s10008-010-1240-4 Shao, 2015, Nanocomposite polymer electrolyte for rechargeable magnesium batteries, Nano Energy, 12, 750, 10.1016/j.nanoen.2014.12.028 Song, 2017, Communication—a composite polymer electrolyte for safer Mg batteries, J. Electrochem. Soc., 164, A741, 10.1149/2.1171704jes Ikeda, 1987, Solid electrolytes with multivalent cation conduction: 1. Conducting species in Mg-Zr-PO4 system, Solid State Ionics, 23, 125, 10.1016/0167-2738(87)90091-9 Ikeda, 1990, Solid electrolytes with multivalent cation conduction (2) zinc ion conduction in Zn-Zr-PO4 system, Solid State Ionics, 40–41, 79, 10.1016/0167-2738(90)90291-X Nomura, 1992, Framework structure, phase transition, and transport properties in MIIZr4(PO4)6 compounds (MII = Mg, Ca, Sr, Ba, Mn, Co, Ni, Zn, Cd, and Pb), Bull. Chem. Soc. Jpn., 65, 3221, 10.1246/bcsj.65.3221 Köhler, 1998, Multivalent cationic conduction in crystalline solids, Chem. Mater., 10, 3790, 10.1021/cm980473t Kawamura, 2001, High temperature 31P NMR study on Mg2+ ion conductors, Solid State Commun., 120, 295, 10.1016/S0038-1098(01)00386-6 Imanaka, 1999, Divalent magnesium ionic conduction in the magnesium phosphate based composites, Chem. Lett., 28, 939, 10.1246/cl.1999.939 Imanaka, 2000, Divalent magnesium ion conducting characteristics in phosphate based solid electrolyte composites, J. Mater. Chem., 10, 1431, 10.1039/a909599c Adamu, 2016, Novel sol-gel synthesis of MgZr4P6O24 composite solid electrolyte and newer insight into the Mg2+-ion conducting properties using impedance spectroscopy, J. Phys. Chem. C., 120, 17909, 10.1021/acs.jpcc.6b05036 Higashi, 2014, A novel inorganic solid state ion conductor for rechargeable Mg batteries, Chem. Commun., 50, 1320, 10.1039/C3CC47097K Roedern, 2017, Magnesium ethylenediamine borohydride as solid-state electrolyte for magnesium batteries, Sci. Rep., 24, 2 Yamanaka, 2014, Preparation of magnesium ion conducting MgS–P2S5–MgI2 glasses by a mechanochemical technique, Solid State Ionics, 262, 601, 10.1016/j.ssi.2013.10.037 Canepa, 2017, High magnesium mobility in ternary spinel chalcogenides, Nat. Commun., 8, 1759, 10.1038/s41467-017-01772-1 Kamaya, 2011, A lithium superionic conductor, Nat. Mater., 10, 682, 10.1038/nmat3066 Wang, 2019, MgSc2Se4 - a magnesium solid ionic conductor for all-solid-state Mg batteries?, ChemSusChem, 10.1002/cssc.201900225 Aubrey, 2014, Metal–organic frameworks as solid magnesium electrolytes, Energy Environ. Sci., 7, 667, 10.1039/c3ee43143f Wiers, 2011, A solid lithium electrolyte via addition of lithium isopropoxide to a metal À organic framework with open metal sites, J. Am. Chem. Soc., 2, 14522, 10.1021/ja205827z Ameloot, 2013, Ionic conductivity in the metal – organic framework UiO-66 by dehydration and insertion of lithium tert -butoxide, Chem. A Eur. J., 19, 5533, 10.1002/chem.201300326