Functionalized individual ZnO microwire for natural gas detection

Sensors and Actuators A: Physical - Tập 176 - Trang 64-71 - 2012
G.Y. Chai1, O. Lupan1,2, E.V. Rusu3, G.I. Stratan3, V.V. Ursaki4,5, V. Şontea2, H. Khallaf1, L. Chow1,6,7
1Department of Physics, University of Central Florida, PO Box 162385, Orlando, FL 32816-2385, USA
2Department of Microelectronics and Semiconductor Devices, Technical University of Moldova, 168 Stefan cel Mare Blvd., MD-2004 Chisinau, Republic of Moldova
3Laboratory of Nanotechnology, Institute of Electronic Engineering and Nanotechnology, Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova
4Institute of Applied Physics of the Academy of Sciences of Moldova, MD-2028 Chisinau, Republic of Moldova
5National Center for Materials Study and Testing, Technical University of Moldova, Chisinau 2004, Republic of Moldova
6Graduate Institute of Electro-Optical Engineering and Green Technology Research Center, Chang Gung University, Taiwan
7Advanced Materials Processing and Analysis Center, and Department of Mechanical, Materials, and Aerospace Engineering, University of Central Florida, PO Box 162385, Orlando, FL 32816-2455, USA

Tài liệu tham khảo

Blok, 1997, Hydrogen production from natural gas, sequestration of recovered CO2 in depleted gas wells and enhanced natural gas recovery, Energy, 22, 161, 10.1016/S0360-5442(96)00136-3 Chen, 2008, Methane gas-sensing and catalytic oxidation activity of SnO2–In2O3 nanocomposites incorporating TiO2, Sens. Actuators B, 135, 7, 10.1016/j.snb.2008.06.050 Gurav, 2011, LPG sensing properties of Pd-sensitized vertically aligned ZnO nanorods, Sens. Actuators B, 151, 365, 10.1016/j.snb.2010.08.012 Kim, 1997, Tin oxide-based methane gas sensor promoted by alumina-supported Pd catalyst, Sens. Actuators B, 45, 271, 10.1016/S0925-4005(97)00325-0 de Angelis, 1995, Selectivity and stability of tin dioxide sensor for methane, Sens. Actuators B, 28, 25, 10.1016/0925-4005(94)01532-M Tournier, 1995, Selective detection of CO and CH4 with gas sensors using SnO2 doped with palladium, Sens. Actuators B, 26, 24, 10.1016/0925-4005(94)01549-W Wang, 2006, Adsorption of iso-butane on ZnO(0001)–Zn, Surf. Sci., 600, 4855, 10.1016/j.susc.2006.08.006 Mazingue, 2006, Optical characterizations of ZnO, SnO2, and TiO2 thin films for butane detection, Appl. Opt., 45, 1425, 10.1364/AO.45.001425 Mazingue, 2005, Nanostructured ZnO coatings grown by pulsed laser deposition for optical gas sensing of butane, J. Appl. Phys., 98, 074312, 10.1063/1.2076442 Lupan, 2009, A single ZnO tetrapod-based sensor, Sens. Actuators B, 141, 511, 10.1016/j.snb.2009.07.011 Joo, 2009, ZnO nanorod-coated quartz crystals as self-cleaning thiol sensors for natural gas fuel cells, Sens. Actuators B, 138, 485, 10.1016/j.snb.2009.03.017 Kim, 1997, Propane:butane semiconductor gas sensor with low power consumption, Sens. Actuators B, 44, 452, 10.1016/S0925-4005(97)00237-2 Flitsiyan, 2009, Neutron transmutation doping and radiation hardness for solution-grown bulk and nano-structured ZnO, Mater. Res. Soc. Symp. Proc., 1108, 55 Ursaki, 2007, Optical characterization of hierarchical ZnO structures grown with a simplified vapour transport method, Nanotechnology, 18, 215705, 10.1088/0957-4484/18/21/215705 Kind, 2002, Nanowire ultraviolet photodetectors and optical switches, Adv. Mater., 14, 158, 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W Lupan, 2007, Nanofabrication and characterization of ZnO nanorod arrays and branched microrods by aqueous solution route and rapid thermal processing, Mater. Sci. Eng. B, 145, 57, 10.1016/j.mseb.2007.10.004 Polsongkram, 2008, Effect of synthesis conditions on the growth of ZnO nanorods via hydrothermal method, Physica B: Condens. Mater., 403, 3713, 10.1016/j.physb.2008.06.020 Markushev, 2008, ZnO lasing in complex systems with tetrapods, Appl. Phys. B, 93, 231, 10.1007/s00340-008-3153-9 Lupan, 2008, Focused-ion-beam fabrication of ZnO nanorod-based UV photodetector using the in situ lift-out technique, Phys. Stat. Sol. A, 205, 2673, 10.1002/pssa.200824233 Lupan, 2010, Ultraviolet photoconductive sensor based on single ZnO nanowire, Phys. Stat. Sol. A: Appl. Mater., 207, 1735, 10.1002/pssa.200983706 Chai, 2009, Crossed zinc oxide nanorods for ultraviolet radiation detection, Sens. Actuators A, 150, 184, 10.1016/j.sna.2008.12.020 Chow, 2010, FIB fabrication of ZnO nanotetrapod and cross-sensor, Phys. Stat. Sol. B, 247, 1628, 10.1002/pssb.200983695 Meyer, 2004, Bound exciton and donor-acceptor pair recombinations in ZnO, Phys. Stat. Sol. B, 241, 231, 10.1002/pssb.200301962 Ursaki, 2004, Multiphonon resonant Raman scattering in ZnO crystals and nanostructured layers, Phys. Rev. B, 70, 155204, 10.1103/PhysRevB.70.155204 Kaschner, 2002, Nitrogen-related local vibrational modes in ZnO:N, Appl. Phys. Lett., 80, 1909, 10.1063/1.1461903 Pauporté, 2011, Highly luminescent columnar ZnO films grown directly on n- Si and p-Si substrates by low-temperature electrochemical deposition, Opt. Mater., 33, 914, 10.1016/j.optmat.2011.01.024 Rajalakshmi, 2000, Optical phonon confinement in zinc oxide nanoparticles, J. Appl. Phys., 87, 2445, 10.1063/1.372199 Serrano, 2003, Dispersive phonon linewidths: the E-2 phonons of ZnO, Phys. Rev. Lett., 90, 055510, 10.1103/PhysRevLett.90.055510 Lupan, 2007, Fabrication of ZnO nanorod-based hydrogen gas nanosensor, Microelectron. J., 38, 1211, 10.1016/j.mejo.2007.09.004 Lupan, 2010, Selective hydrogen gas nanosensor using individual ZnO nanowire with fast response at room temperature, Sens. Actuators B, 144, 56, 10.1016/j.snb.2009.10.038 Koerts, 1991, The reaction path for recombination of surface CHx species, J. Mol. Catal., 70, 119, 10.1016/0304-5102(91)85010-Y Koerts, 1991, A low temperature reaction sequence for methane conversion, J. Chem. Soc. Chem. Commun., 18, 1281, 10.1039/c39910001281 Lupan, 2008, Novel hydrogen gas sensor based on single ZnO nanorod, Microelectron. Eng., 85, 2220, 10.1016/j.mee.2008.06.021 Saito, 1985, Gas sensing characteristic of porous ZnO and Pt/ZnO ceramics, J. Am. Ceram. Soc., 68, 40, 10.1111/j.1151-2916.1985.tb15248.x Arnold, 2003, Field-effect transistors based on single semiconducting oxide nanobelts, J. Phys. Chem. B, 107, 659, 10.1021/jp0271054 Kolmakov, 2004, Chemical sensing and catalysis by one-dimensional metal–oxide nanostructures, Annu. Rev. Mater. Res., 34, 151, 10.1146/annurev.matsci.34.040203.112141 Sun, 2000, Investigation of a new catalytic combustion-type CH4 gas sensor with low power consumption, Sens. Actuators B, 66, 289, 10.1016/S0925-4005(00)00527-X Lupan, 2010, Synthesis and characterization of ZnO nanowires for nanosensor applications, Mater. Res. Bull., 45, 1026, 10.1016/j.materresbull.2010.03.027