Nucleocapsid protein binding DNA aptamers for detection of SARS-COV-2
Tài liệu tham khảo
Abrego-Martinez, 2022, Aptamer-based electrochemical biosensor for rapid detection of SARS-CoV-2: Nanoscale electrode-aptamer-SARS-CoV-2 imaging by photo-induced force microscopy, Biosens. Bioelectron., 195, 10.1016/j.bios.2021.113595
Ai, 2020, Era of molecular diagnosis for pathogen identification of unexplained pneumonia, lessons to be learned, Emerg Microbes Infect, 9, 597, 10.1080/22221751.2020.1738905
AminiLi, R., Z. ZhangLi, J. LiLi, J. Gu, J. D. Brennan and Y. Li (2022). “Aptamers for SARS-CoV-2: Isolation, Characterization, and Diagnostic and Therapeutic Developments.” Anal Sens: e202200035.
Avni, 1987, The status of medical imagery in pediatric urology, Acta Urol. Belg., 55, 43
Baker, 2015, Reproducibility crisis: Blame it on the antibodies, Nature, 521, 274, 10.1038/521274a
Bar-On, 2020, SARS-CoV-2 (COVID-19) by the numbers, Elife, 9, 10.7554/eLife.57309
Bunka, 2006, Aptamers come of age - at last, Nat. Rev. Microbiol., 4, 588, 10.1038/nrmicro1458
Cameroni, 2022, Broadly neutralizing antibodies overcome SARS-CoV-2 Omicron antigenic shift, Nature, 602, 664, 10.1038/s41586-021-04386-2
Chen, 2020, A DNA Aptamer Based Method for Detection of SARS-CoV-2 Nucleocapsid Protein, Virol. Sin., 35, 351, 10.1007/s12250-020-00236-z
Chen, 2015, Replacing antibodies with aptamers in lateral flow immunoassay, Biosens. Bioelectron., 71, 230, 10.1016/j.bios.2015.04.041
Cho, 2011, Novel system for detecting SARS coronavirus nucleocapsid protein using an ssDNA aptamer, J. Biosci. Bioeng., 112, 535, 10.1016/j.jbiosc.2011.08.014
Cubuk, 2021, The SARS-CoV-2 nucleocapsid protein is dynamic, disordered, and phase separates with RNA, Nat. Commun., 12, 1936, 10.1038/s41467-021-21953-3
Ellington, 1990, In vitro selection of RNA molecules that bind specific ligands, Nature, 346, 818, 10.1038/346818a0
He, 2004, Mapping of antigenic sites on the nucleocapsid protein of the severe acute respiratory syndrome coronavirus, J. Clin. Microbiol., 42, 5309, 10.1128/JCM.42.11.5309-5314.2004
Hossain, 2022, Unique mutations in SARS-CoV-2 Omicron subvariants' non-spike proteins: Potential impacts on viral pathogenesis and host immune evasion, Microb. Pathog., 170, 10.1016/j.micpath.2022.105699
Huang, 2020, Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19, Acta Pharmacol. Sin., 41, 1141, 10.1038/s41401-020-0485-4
Ji, 2020, Detection of COVID-19: A review of the current literature and future perspectives, Biosens. Bioelectron., 166, 10.1016/j.bios.2020.112455
Jones, 2021, Estimating infectiousness throughout SARS-CoV-2 infection course, Science, 373, 10.1126/science.abi5273
Kang, 2021, Ultrasensitive Detection Platform of Disease Biomarkers Based on Recombinase Polymerase Amplification with H-Sandwich Aptamers, Anal. Chem., 93, 992, 10.1021/acs.analchem.0c03822
Lakhin, 2013, Aptamers: problems, solutions and prospects, Acta Nat., 5, 34, 10.32607/20758251-2013-5-4-34-43
Leuzinger, 2022, Impact of SARS-CoV-2 Omicron on Rapid Antigen Testing Developed for Early-Pandemic SARS-CoV-2 Variants, Microbiol Spectr, 10, e0200622, 10.1128/spectrum.02006-22
Li, 2021, Diverse high-affinity DNA aptamers for wild-type and B.1.1.7 SARS-CoV-2 spike proteins from a pre-structured DNA library, Nucleic Acids Res., 49, 7267, 10.1093/nar/gkab574
Long, 2020, Diagnosis of the Coronavirus disease (COVID-19): rRT-PCR or CT?, Eur. J. Radiol., 126, 10.1016/j.ejrad.2020.108961
Magazine, 2022, Mutations and Evolution of the SARS-CoV-2 Spike Protein, Viruses, 14, 10.3390/v14030640
Mahase, 2020, Covid-19: 120 million rapid tests pledged to low and middle income countries, BMJ, 371
Nguyen, 2016, Highly sensitive sandwich-type SPR based detection of whole H5Nx viruses using a pair of aptamers, Biosens. Bioelectron., 86, 293, 10.1016/j.bios.2016.06.064
Nikam, 2022, In vitro selection and characterization of ssDNA aptamers by cross-over SELEX and its application for detection of S. Typhimurium, Anal. Biochem., 656, 10.1016/j.ab.2022.114884
Nimjee, 2005, Aptamers: an emerging class of therapeutics, Annu. Rev. Med., 56, 555, 10.1146/annurev.med.56.062904.144915
Ravi, 2020, Diagnostics for SARS-CoV-2 detection: A comprehensive review of the FDA-EUA COVID-19 testing landscape, Biosens. Bioelectron., 165, 10.1016/j.bios.2020.112454
Schutze, 2011, Probing the SELEX process with next-generation sequencing, PLoS One, 6, e29604, 10.1371/journal.pone.0029604
Sender, 2021, The total number and mass of SARS-CoV-2 virions, PNAS, 118, 10.1073/pnas.2024815118
Shereen, 2020, COVID-19 infection: Origin, transmission, and characteristics of human coronaviruses, J. Adv. Res., 24, 91, 10.1016/j.jare.2020.03.005
Stankiewicz Karita, 2022, Trajectory of Viral RNA Load Among Persons With Incident SARS-CoV-2 G614 Infection (Wuhan Strain) in Association With COVID-19 Symptom Onset and Severity, JAMA Netw. Open, 5, e2142796, 10.1001/jamanetworkopen.2021.42796
Svobodova, 2021, Aptamer Sandwich Assay for the Detection of SARS-CoV-2 Spike Protein Antigen, ACS Omega, 6, 35657, 10.1021/acsomega.1c05521
Syed, A. M., A. Ciling, T. Y. Taha, I. P. Chen, M. M. Khalid, B. Sreekumar, P. Y. Chen, G. R. Kumar, R. Suryawanshi, I. Silva, B. Milbes, N. Kojima, V. Hess, M. Shacreaw, L. Lopez, M. Brobeck, F. Turner, L. Spraggon, T. Tabata, M. Ott and J. A. Doudna (2022). “Omicron mutations enhance infectivity and reduce antibody neutralization of SARS-CoV-2 virus-like particles.” Proc Natl Acad Sci U S A 119(31): e2200592119.
Syed, 2021, Rapid assessment of SARS-CoV-2-evolved variants using virus-like particles, Science, 374, 1626, 10.1126/science.abl6184
Terry, 2021, Development of a SARS-CoV-2 nucleocapsid specific monoclonal antibody, Virology, 558, 28, 10.1016/j.virol.2021.01.003
Tuerk, 1990, Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase, Science, 249, 505, 10.1126/science.2200121
Valero, 2021, A serum-stable RNA aptamer specific for SARS-CoV-2 neutralizes viral entry, PNAS, 118, 10.1073/pnas.2112942118
Voskuil, 2014, Commercial antibodies and their validation, F1000Res, 3, 232, 10.12688/f1000research.4966.1
Wang, H., K. R. Paulson, S. A. Pease, S. Watson, H. Comfort, P. Zheng, A. Y. Aravkin, C. Bisignano, R. M. Barber, T. Alam, E. A. M. John E Fuller, Darwin Phan Jones, Meghan E Frisch, Cristiana Abbafati, Chri and S. A. P. Katherine R Paulson, Stefanie Watson, Haley Comfort, Peng Zheng, Aleksandr Y Aravkin, Catherine Bisignano, Ryan M Barber, Tahiya Alam, John E Fuller, Erin A May, Darwin Phan Jones, Meghan E Frisch, Cristiana Abbafati, Christopher Adolph, Adrien Allorant, Joanne O Amlag, Bree Bang-Jensen, Gregory J Bertolacci, Sabina S Bloom, Austin Carter, Emma Castro, Suman Chakrabarti, Jhilik Chattopadhyay, Rebecca M Cogen, James K Collins, Kimberly Cooperrider, Xiaochen Dai, William James Dangel, Farah Daoud, Carolyn Dapper, Amanda Deen, Bruce B Duncan, Megan Erickson, Samuel B Ewald, Tatiana Fedosseeva, Alize J Ferrari, Joseph Jon Frostad, Nancy Fullman, John Gallagher, Amiran Gamkrelidze, Gaorui Guo, Jiawei He, Monika Helak, Nathaniel J Henry, Erin N Hulland, Bethany M Huntley, Maia Kereselidze, Alice Lazzar-Atwood, Kate E LeGrand, Akiaja Lindstrom, Emily Linebarger, Paulo A Lotufo, Rafael Lozano, Beatrice Magistro, Deborah Carvalho Malta, Johan Månsson, Ana M Mantilla Herrera, Fatima Marinho, Alemnesh H Mirkuzie, Awoke Temesgen Misganaw, Lorenzo Monasta, Paulami Naik, Shuhei Nomura, Edward G O'Brien, James Kevin O'Halloran, Latera Tesfaye Olana, Samuel M Ostroff, Louise Penberthy, Robert C Reiner Jr, Grace Reinke, Antonio Luiz P Ribeiro, Damian Francesco Santomauro, Maria Inês Schmidt, David H Shaw, Brittney S Sheena, Aleksei Sholokhov, Natia Skhvitaridze, Reed J D Sorensen, Emma Elizabeth Spurlock, Ruri Syailendrawati, Roman Topor-Madry, Christopher E Troeger, Rebecca Walcott, Ally Walker, Charles Shey Wiysonge, Nahom Alemseged Worku, Bethany Zigler, David M Pigott, Mohsen Naghavi, Ali H Mokdad, Stephen S Lim, Simon I Hay, Emmanuela Gakidou, Christopher J L Murray (2022). “Estimating excess mortality due to the COVID-19 pandemic: a systematic analysis of COVID-19-related mortality, 2020-21.” Lancet 399(10334): 1513-1536.
Weissleder, 2020, COVID-19 diagnostics in context, Sci. Transl. Med., 12, 10.1126/scitranslmed.abc1931
Yang, 2022, SCORe: SARS-CoV-2 Omicron Variant RBD-Binding DNA Aptamer for Multiplexed Rapid Detection and Pseudovirus Neutralization, Anal. Chem.
Yang, 2022, Aptamer Sandwich Lateral Flow Assay (AptaFlow) for Antibody-Free SARS-CoV-2 Detection, Anal. Chem., 94, 7278, 10.1021/acs.analchem.2c00554
Zhang, 2020, Discovery of sandwich type COVID-19 nucleocapsid protein DNA aptamers, Chem. Commun. (Camb), 56, 10235, 10.1039/D0CC03993D
Zhang, 2021, High-Affinity Dimeric Aptamers Enable the Rapid Electrochemical Detection of Wild-Type and B.1.1.7 SARS-CoV-2 in Unprocessed Saliva, Angew. Chem. Int. Ed. Engl., 60, 24266, 10.1002/anie.202110819
Zhang, 2022, A Novel Sandwich ELASA Based on Aptamer for Detection of Largemouth Bass Virus (LMBV), Viruses, 14, 10.3390/v14050945
Zuker, 2003, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Res., 31, 3406, 10.1093/nar/gkg595