Relaxation of non-isothermal hot dense plasma parameters

Matter and Radiation at Extremes - Tập 3 - Trang 40-49 - 2018
S.K. Kodanova1,2, M.K. Issanova1, S.M. Amirov1,2, T.S. Ramazanov1, A. Tikhonov3, Zh.A. Moldabekov1,2
1Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Str., 050040 Almaty, Kazakhstan
2Institute of Applied Sciences and IT, 40-48 Shashkin Str., 050038 Almaty, Kazakhstan
3Nazarbayev University, Kabanbay Batyr Ave. 53, Astana 010000, Kazakhstan

Tóm tắt

The relaxation of temperature, coupling parameters, the excess part of equation of state, and the correlation energy of the non-isothermal hot dense plasmas are considered on the basis of the method of effective interaction potentials. The electron–ion effective interaction potential for the hot dense plasma is discussed. The accuracy of description of the dense plasma properties by the effective electron–ion interaction potential is demonstrated by the agreement of the derived quantities like stopping power and transport coefficients calculated using our methodology with the results of the finite-temperature Kohn-Sham density-functional theory molecular dynamics, and orbital-free molecular dynamics results as well as with the data obtained using other theoretical approaches.

Tài liệu tham khảo

2005, Present and future perspectives for high energy density physics with intense heavy ion and laser beams, Laser Part. Beams, 23, 47, 10.1017/s026303460505010x 2016, High energy density physics with intense ion beams, Matter Radiat. Extremes, 1, 28, 10.1016/j.mre.2016.01.002 2016, Review of heavy-ion inertial fusion physics, Matter Radiat. Extremes, 1, 89, 10.1016/j.mre.2016.03.003 2014, Fuel gain exceeding unity in an inertially confined fusion implosion, Nature, 506, 343, 10.1038/nature13008 2014, Experimental demonstration of fusion-relevant conditions in magnetized liner inertial fusion, Phys. Rev. Lett., 113, 155003, 10.1103/physrevlett.113.155003 2014, Understanding Fuel Magnetization and Mix Using Secondary Nuclear Reactions in Magneto-Inertial Fusion, Phys. Rev. Lett., 113, 155004, 10.1103/PhysRevLett.113.155004 2016, Transport properties of inertial confinement fusion dense plasmas, Contrib. Plasma Phys., 56, 425, 10.1002/ctpp.201500134 2015, Effective potentials of interactions and thermodynamic properties of a nonideal two-temperature dense plasma, Phys. Rev. E, 92, 023104, 10.1103/physreve.92.023104 2016, Multipole expansion in plasmas: effective interaction potentials between compound particles, Phys. Rev. E, 93, 053204, 10.1103/physreve.93.053204 2014, Interaction potentials and thermodynamic properties of two component semiclassical plasma, Phys. Plasmas, 21, 012706, 10.1063/1.4862549 1994, Evaluation of the Coulomb logarithm using cutoff and screened Coulomb potentials, Phys. Plasmas, 1, 2515, 10.1063/1.870578 2001, Coulomb logarithm of a nonideal plasma, Phys. Plasmas, 8, 5049, 10.1063/1.1407820 2015, Investigation of Coulomb logarithm and relaxation processes in dense plasma on the basis of effective potentials, Contrib. Plasma Phys., 55, 271, 10.1002/ctpp.201400094 2016, Classical scattering and stopping power in dense plasmas: the effect of diffraction and dynamic screening, Laser Part. Beams, 34, 457, 10.1017/s026303461600032x 2013, Dynamical properties of non-ideal plasma on the basis of effective potentials, Phys. Plasmas, 20, 112702, 10.1063/1.4829042 2015, Dynamical screening and wake effects in classical, quantum, and ultrarelativistic plasmas, Contrib. Plasma Phys., 55, 186, 10.1002/ctpp.201400105 2016, Notes on anomalous quantum wake effects, Contrib. Plasma Phys., 56, 442, 10.1002/ctpp.201500137 2006, Cross sections and transport coefficients of dense partially ionized semiclassical plasma, J. Phys. A Math. Gen., 39, 4335, 10.1088/0305-4470/39/17/s04 2003, Quantum screening effects on the electron-ion occurrence scattering time advance in strongly coupled semiclassical plasmas, Phys. Plasmas, 10, 3051, 10.1063/1.1589750 2007, Quantum effects on polarization transport scatterings in partially ionized dense hydrogen plasmas, Phys. Plasmas, 14, 074501, 10.1063/1.2751605 2010, Quantum screening effects on the ion-ion collisions in strongly coupled semiclassical plasmas, Phys. Plasmas, 17, 074506, 10.1063/1.3463702 1995, Pseudopotential theory of classical non-ideal plasmas, Phys. Lett. A, 202, 211, 10.1016/0375-9601(95)00304-l 1996, Electrical conductivity and scattering sections of strongly coupled hydrogen plasmas, Phys. A, 226, 181, 10.1016/0378-4371(95)00396-7 2015, Unified description of linear screening in dense plasmas, Phys. Rev. E, 91, 033104, 10.1103/physreve.91.049901 2015, Hydrodynamic limit of Wigner-Poisson kinetic theory: revisited, Phys. Plasmas, 22, 022103, 10.1063/1.4907167 2015, Statically screened ion potential and Bohm potential in a quantum plasma, Phys. Plasmas, 22, 102104, 10.1063/1.4932051 2013, Effective potential theory for transport coefficients across coupling regimes, Phys. Rev. Lett., 110, 235001, 10.1103/physrevlett.110.235001 2012, Practical model for the self-diffusion coefficient in Yukawa one-component plasmas, Phys. Rev. E, 86, 047401, 10.1103/physreve.86.047401 2012, Transport coefficients in strongly coupled plasmas, Phys. Plasmas, 19, 030701, 10.1063/1.3690093 1995, Effective potential of a semiclassical hydrogen plasma, Phys. Lett. A, 197, 157, 10.1016/0375-9601(94)00918-f 2012, Novel attractive force between ions in quantum plasmas, Phys. Rev. Lett., 108, 165007, 10.1103/physrevlett.108.165007 2002, Effective potentials for ion-ion and charge-atom interactions of dense semiclassical plasma, Phys. Plasmas, 17, 042703, 10.1063/1.3381078 2015, Ion potential in warm dense matter: wake effects due to streaming degenerate electrons, Phys. Rev. E, 91, 023102, 10.1103/physreve.91.023102 2009, What can we learn from electromagnetic plasmas about the quarkgluon plasma?, J. Phys. A Math. Theor., 42, 214004, 10.1088/1751-8113/42/21/214004 2007, What do electromagnetic plasmas tell us about the Quark-Gluon plasma?, Annu. Rev. Nucl. Part. Sci., 57, 61, 10.1146/annurev.nucl.57.090506.123124 2011, On description of a collisionless quantum plasma, Phys. Usp., 54, 1243, 10.3367/ufne.0181.201112g.1313 1990, Dynamic screening of ions in condensed matter, Solid State Phys., 43, 229, 10.1016/s0081-1947(08)60325-2 2012, On the wake structure in streaming complex plasmas, New J. Phys., 14, 053016, 10.1088/1367-2630/14/5/053016 1984, Dielectric response of quantum plasmas in thermal equilibrium, Phys. Rev. A, 29, 1471, 10.1103/physreva.29.1471 1977, Nodal expansion in a real matter plasma, Phys. Lett. A, 60, 317, 10.1016/0375-9601(77)90111-6 1981, Nodal expansions for strongly coupled classical plasmas, Phys. Rep., 69, 85, 10.1016/0370-1573(81)90021-1 1989, Correlations in a two-temperature plasma, Phys. Rev. A, 40, 323, 10.1103/physreva.40.323 2013, Hypernetted chain calculations for multi-component and nonequilibrium, Contrib. Plasma Phys., 53, 276, 10.1002/ctpp.201200117 2016, The work of Baimbetov on nonideal plasmas and some recent developments, Contrib. Plasma Phys., 56, 163, 10.1002/ctpp.201500118 1996, Measurement of the Coulomb energy loss by fast protons in a plasma target, Phys. Rev. E, 53, 2701, 10.1103/physreve.53.2701 2016, Ion stopping in dense plasmas: a basic physics approach, Matter Radiat. Extremes, 1, 277, 10.1016/j.mre.2016.11.004 2013, Molecular dynamics simulations of classical stopping power, Phys. Rev. Lett., 111, 215002, 10.1103/physrevlett.111.215002 1988, Energy loss of charged particles moving in a plasma, Physica A, 149, 313, 10.1016/0378-4371(88)90222-1 2004, The Physics of Inertial Fusion: Beam Plasma Interaction, Hydrodynamics, Hot Dense Matter, International Series of Monographs on Physics, the Physics of Inertial Fusion 2013, Transport properties of dense deuterium-tritium plasmas, Phys. Rev. E, 88, 013106, 10.1103/physreve.88.013106 2014, First-principles thermal conductivity of warm-dense deuterium plasmas for inertial confinement fusion applications, Phys. Rev. E, 89, 043105, 10.1103/physreve.89.043105 2010, Viscosity and mutual diffusion of deuterium-tritium mixtures in the warm-dense-matter regime, Phys. Rev. E, 82, 036404, 10.1103/physreve.82.036404 2006, Liquid-state properties of a one-component plasma, Phys. Rev. Lett., 96, 065003, 10.1103/physrevlett.96.065003 Daligault, 2009, Liquid-state properties of a one-component plasma, Phys. Rev. Lett., 103, 029901E, 10.1103/PhysRevLett.103.029901 2005, Viscosity and mutual diffusion in strongly asymmetric binary ionic mixtures, Phys. Rev. E, 71, 056405, 10.1103/physreve.71.056405 1978, Kinetic theory of the shear viscosity of a strongly coupled classical one-component plasma, Phys. Rev. A, 18, 1737, 10.1103/physreva.18.1737 2005, Charged particle motion in a highly ionized plasma, Phys. Rep., 410, 237, 10.1016/j.physrep.2005.01.001 1967, Physics of Fully Ionized Gases, 586 2009, Dense plasma temperature equilibration in the binary collision approximation, Phys. Rev. E, 65, 036418, 10.1103/physreve.65.036418 2008, Molecular dynamics simulations of temperature equilibration in dense hydrogen, Phys. Rev. E, 78, 025401, 10.1103/physreve.78.025401 2016, Equation of state of a dense plasma: analytical results on the basis of quantum pair interaction potentials in the random phase approximation, J. Phys. Conf. Ser., 774, 012144, 10.1088/1742-6596/774/1/012144 2016, Interaction between ions in hot dense plasma via screened Cornell potential, Phys. Plasmas, 23, 042703, 10.1063/1.4945648 2014, The modern information technologies and visualization methods for analysis of computer simulation results for complex plasma, Commun. Comput. Phys., 15, 981, 10.4208/cicp.140313.070613s