Investigation of surface integrity in laser-assisted machining of nickel based superalloy
Tài liệu tham khảo
Chamanfar, 2013, Microstructural characteristics of forged and heat treated Inconel-718 disks, Mater. Des., 52, 791, 10.1016/j.matdes.2013.06.004
Liao, 2018, On the influence of gamma prime upon machining of advanced nickel based superalloy, CIRP Ann., 67, 109, 10.1016/j.cirp.2018.03.021
Diaz, 2019, The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity, Int. J. Mach. Tools Manuf., 139, 24, 10.1016/j.ijmachtools.2019.01.003
Lin, 2015, New constitutive model for high-temperature deformation behavior of inconel 718 superalloy, Mater. Des., 74, 108, 10.1016/j.matdes.2015.03.001
Liao, 2019, Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - mechanical machining case, Acta Mater., 180, 2, 10.1016/j.actamat.2019.08.059
Zhang, 2015, Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation, Mater. Des., 80, 51, 10.1016/j.matdes.2015.05.004
Xu, 2020, A novel method to continuously map the surface integrity and cutting mechanism transition in various cutting conditions, Int. J. Mach. Tools Manuf., 151, 10.1016/j.ijmachtools.2020.103529
Xu, 2019, A quick method for evaluating the thresholds of workpiece surface damage in machining, CIRP Ann. - Manuf. Technol, 68, 61, 10.1016/j.cirp.2019.03.015
Liao, 2019, State-of-the-art of surface integrity in machining of metal matrix composites, Int. J. Mach. Tools Manuf., 143, 63, 10.1016/j.ijmachtools.2019.05.006
Imbrogno, 2018, A physically based constitutive model for predicting the surface integrity in machining of Waspaloy, Mater. Des., 152, 140, 10.1016/j.matdes.2018.04.069
Rashid, 2012, An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti--6Cr--5Mo--5V--4Al beta titanium alloy, Int. J. Mach. Tools Manuf., 63, 58, 10.1016/j.ijmachtools.2012.06.004
Dumitrescu, 2006, High-power diode laser assisted hard turning of AISI D2 tool steel, Int. J. Mach. Tools Manuf., 46, 2009, 10.1016/j.ijmachtools.2006.01.005
Dandekar, 2010, Machinability improvement of titanium alloy (Ti--6Al--4V) via LAM and hybrid machining, Int. J. Mach. Tools Manuf., 50, 174, 10.1016/j.ijmachtools.2009.10.013
Rebro, 2004, Design of operating conditions for crackfree laser-assisted machining of mullite, Int. J. Mach. Tools Manuf., 44, 677, 10.1016/j.ijmachtools.2004.02.011
Pan, 2017, Heat affected zone in the laser-assisted milling of Inconel 718, J. Manuf. Process., 30, 141, 10.1016/j.jmapro.2017.09.021
Anderson, 2006, Laser-assisted machining of Inconel 718 with an economic analysis, Int. J. Mach. Tools Manuf., 46, 1879, 10.1016/j.ijmachtools.2005.11.005
Bermingham, 2015, Tool life and wear mechanisms in laser assisted milling Ti--6Al--4V, Wear, 322, 151, 10.1016/j.wear.2014.11.001
Cha, 2020, Development of a novel system for in-situ repair of aeroengine airfoil via pulsed laser ablation, J. Manuf. Syst., 55, 126, 10.1016/j.jmsy.2020.03.001
Shang, 2019, On modelling of laser assisted machining: forward and inverse problems for heat placement control, Int. J. Mach. Tools Manuf., 138, 36, 10.1016/j.ijmachtools.2018.12.001
Balbaa, 2015, Prediction of residual stresses after laser-assisted machining of Inconel 718 using SPH, Procedia CIRP, 31, 19, 10.1016/j.procir.2015.03.034
Nasr, 2014, Modelling machining-induced residual stresses after laser-assisted turning of steels, 996, 622
Tian, 2008, Laser-assisted milling of silicon nitride ceramics and Inconel 718, J. Manuf. Sci. Eng., 130, 10.1115/1.2927447
Cheng, 2000, An analytical model for the temperature field in the laser forming of sheet metal, J. Mater. Process. Technol., 101, 260, 10.1016/S0924-0136(99)00411-2
C. Multiphysics, 2012, 39
Kabir, 2018, Thermomechanical modelling of laser surface glazing for H13 tool steel, Appl. Phys. A Mater. Sci. Process., 124, 260, 10.1007/s00339-018-1671-9
Mierzejewska, 2019, Effect of laser energy density, internal porosity and heat treatment on mechanical behavior of biomedical Ti6Al4V alloy obtained with DMLS technology, Materials (Basel), 12, 2331, 10.3390/ma12142331
Zhang, 2018, Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel, Int. J. Mach. Tools Manuf., 130–131, 36, 10.1016/j.ijmachtools.2018.03.008
Devillez, 2011, Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Technol., 211, 1590, 10.1016/j.jmatprotec.2011.04.011
Pusavec, 2011, Surface integrity in cryogenic machining of nickel based alloy Inconel 718, J. Mater. Process. Technol., 211, 773, 10.1016/j.jmatprotec.2010.12.013
Li, 2003, An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys, Acta Mater., 51, 3905, 10.1016/S1359-6454(03)00215-5