Investigation of surface integrity in laser-assisted machining of nickel based superalloy

Materials and Design - Tập 194 - Trang 108851 - 2020
Dongdong Xu1, Zhirong Liao1, Dragos Axinte1,2, Jon Ander Sarasua3, Rachid M'Saoubi4, Anders Wretland5
1Machining and Condition Monitoring Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
2Faculty of Science and Engineering, University of Nottingham Ningbo, Ningbo, China
3IK4-TEKNIKER, Eibar, Guipuzcoa, Spain
4Seco Tools AB, R&D Material and Technology Development, Fagersta, Sweden
5GKN Aerospace Engine Systems AB, Trollhättan, Sweden

Tài liệu tham khảo

Chamanfar, 2013, Microstructural characteristics of forged and heat treated Inconel-718 disks, Mater. Des., 52, 791, 10.1016/j.matdes.2013.06.004 Liao, 2018, On the influence of gamma prime upon machining of advanced nickel based superalloy, CIRP Ann., 67, 109, 10.1016/j.cirp.2018.03.021 Diaz, 2019, The new challenges of machining Ceramic Matrix Composites (CMCs): review of surface integrity, Int. J. Mach. Tools Manuf., 139, 24, 10.1016/j.ijmachtools.2019.01.003 Lin, 2015, New constitutive model for high-temperature deformation behavior of inconel 718 superalloy, Mater. Des., 74, 108, 10.1016/j.matdes.2015.03.001 Liao, 2019, Grain refinement mechanism of nickel-based superalloy by severe plastic deformation - mechanical machining case, Acta Mater., 180, 2, 10.1016/j.actamat.2019.08.059 Zhang, 2015, Effect of strain rate on microstructure evolution of a nickel-based superalloy during hot deformation, Mater. Des., 80, 51, 10.1016/j.matdes.2015.05.004 Xu, 2020, A novel method to continuously map the surface integrity and cutting mechanism transition in various cutting conditions, Int. J. Mach. Tools Manuf., 151, 10.1016/j.ijmachtools.2020.103529 Xu, 2019, A quick method for evaluating the thresholds of workpiece surface damage in machining, CIRP Ann. - Manuf. Technol, 68, 61, 10.1016/j.cirp.2019.03.015 Liao, 2019, State-of-the-art of surface integrity in machining of metal matrix composites, Int. J. Mach. Tools Manuf., 143, 63, 10.1016/j.ijmachtools.2019.05.006 Imbrogno, 2018, A physically based constitutive model for predicting the surface integrity in machining of Waspaloy, Mater. Des., 152, 140, 10.1016/j.matdes.2018.04.069 Rashid, 2012, An investigation of cutting forces and cutting temperatures during laser-assisted machining of the Ti--6Cr--5Mo--5V--4Al beta titanium alloy, Int. J. Mach. Tools Manuf., 63, 58, 10.1016/j.ijmachtools.2012.06.004 Dumitrescu, 2006, High-power diode laser assisted hard turning of AISI D2 tool steel, Int. J. Mach. Tools Manuf., 46, 2009, 10.1016/j.ijmachtools.2006.01.005 Dandekar, 2010, Machinability improvement of titanium alloy (Ti--6Al--4V) via LAM and hybrid machining, Int. J. Mach. Tools Manuf., 50, 174, 10.1016/j.ijmachtools.2009.10.013 Rebro, 2004, Design of operating conditions for crackfree laser-assisted machining of mullite, Int. J. Mach. Tools Manuf., 44, 677, 10.1016/j.ijmachtools.2004.02.011 Pan, 2017, Heat affected zone in the laser-assisted milling of Inconel 718, J. Manuf. Process., 30, 141, 10.1016/j.jmapro.2017.09.021 Anderson, 2006, Laser-assisted machining of Inconel 718 with an economic analysis, Int. J. Mach. Tools Manuf., 46, 1879, 10.1016/j.ijmachtools.2005.11.005 Bermingham, 2015, Tool life and wear mechanisms in laser assisted milling Ti--6Al--4V, Wear, 322, 151, 10.1016/j.wear.2014.11.001 Cha, 2020, Development of a novel system for in-situ repair of aeroengine airfoil via pulsed laser ablation, J. Manuf. Syst., 55, 126, 10.1016/j.jmsy.2020.03.001 Shang, 2019, On modelling of laser assisted machining: forward and inverse problems for heat placement control, Int. J. Mach. Tools Manuf., 138, 36, 10.1016/j.ijmachtools.2018.12.001 Balbaa, 2015, Prediction of residual stresses after laser-assisted machining of Inconel 718 using SPH, Procedia CIRP, 31, 19, 10.1016/j.procir.2015.03.034 Nasr, 2014, Modelling machining-induced residual stresses after laser-assisted turning of steels, 996, 622 Tian, 2008, Laser-assisted milling of silicon nitride ceramics and Inconel 718, J. Manuf. Sci. Eng., 130, 10.1115/1.2927447 Cheng, 2000, An analytical model for the temperature field in the laser forming of sheet metal, J. Mater. Process. Technol., 101, 260, 10.1016/S0924-0136(99)00411-2 C. Multiphysics, 2012, 39 Kabir, 2018, Thermomechanical modelling of laser surface glazing for H13 tool steel, Appl. Phys. A Mater. Sci. Process., 124, 260, 10.1007/s00339-018-1671-9 Mierzejewska, 2019, Effect of laser energy density, internal porosity and heat treatment on mechanical behavior of biomedical Ti6Al4V alloy obtained with DMLS technology, Materials (Basel), 12, 2331, 10.3390/ma12142331 Zhang, 2018, Predictive modelling of microstructure changes, micro-hardness and residual stress in machining of 304 austenitic stainless steel, Int. J. Mach. Tools Manuf., 130–131, 36, 10.1016/j.ijmachtools.2018.03.008 Devillez, 2011, Dry machining of Inconel 718, workpiece surface integrity, J. Mater. Process. Technol., 211, 1590, 10.1016/j.jmatprotec.2011.04.011 Pusavec, 2011, Surface integrity in cryogenic machining of nickel based alloy Inconel 718, J. Mater. Process. Technol., 211, 773, 10.1016/j.jmatprotec.2010.12.013 Li, 2003, An investigation of thermal stability and microhardness of electrodeposited nanocrystalline nickel-21% iron alloys, Acta Mater., 51, 3905, 10.1016/S1359-6454(03)00215-5