An analogue of Cobham's theorem for graph directed iterated function systems
Tài liệu tham khảo
Adamczewski, 2011, An analogue of Cobham's theorem for fractals, Trans. Amer. Math. Soc., 363, 4421, 10.1090/S0002-9947-2011-05357-2
Arnoux, 2001, Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, 8, 181, 10.36045/bbms/1102714169
Barnsley, 1985, Iterated function systems and the global construction of fractals, Proc. R. Soc. Lond. Ser. A, 399, 243, 10.1098/rspa.1985.0057
Berend, 1994, Computability by finite automata and Pisot bases, Math. Syst. Theory, 27, 275, 10.1007/BF01578846
Bertrand-Mathis, 1989, Comment écrire les nombres entiers dans une base qui n'est pas entière, Acta Math. Hungar., 54, 237, 10.1007/BF01952053
Boigelot, 2009, A generalization of Cobham's theorem to automata over real numbers, Theoret. Comput. Sci., 410, 1694, 10.1016/j.tcs.2008.12.051
Boigelot, 1997, An improved reachability analysis method for strongly linear hybrid systems, vol. 1254, 167
Boigelot, 1998, On the expressiveness of real and integer arithmetic automata (extended abstract), 152
Boigelot, 2001, On the use of weak automata for deciding linear arithmetic with integer and real variables, vol. 2083, 611
Boigelot, 2005, An effective decision procedure for linear arithmetic over the integers and reals, ACM Trans. Comput. Log., 6, 614, 10.1145/1071596.1071601
Boigelot, 2008, On the sets of real numbers recognized by finite automata in multiple bases, vol. 5126, 112
Boigelot, 2009, A generalization of Semenov's theorem to automata over real numbers, vol. 5663, 469
Boigelot, 2010, On the sets of real numbers recognized by finite automata in multiple bases, Log. Methods Comput. Sci., 6, 10.2168/LMCS-6(1:6)2010
Bruyère, 1994, Logic and p-recognizable sets of integers, Bull. Belg. Math. Soc. Simon Stevin, 1, 191, 10.36045/bbms/1103408547
Chan, 2014, A multi-dimensional analogue of Cobham's theorem for fractals, Proc. Amer. Math. Soc., 142, 449, 10.1090/S0002-9939-2013-11843-5
Cobham, 1969, On the base-dependence of sets of numbers recognizable by finite automata, Math. Syst. Theory, 3, 186, 10.1007/BF01746527
Daubechies, 2006, Robust and practical analog-to-digital conversion with exponential precision, IEEE Trans. Inform. Theory, 52, 3533, 10.1109/TIT.2006.878220
Daubechies, 2010, The golden ratio encoder, IEEE Trans. Inform. Theory, 56, 5097, 10.1109/TIT.2010.2059750
Durand, 2011, Cobham's theorem for substitutions, J. Eur. Math. Soc. (JEMS), 13, 1799
Edgar, 2008, Measure, Topology, and Fractal Geometry, 10.1007/978-0-387-74749-1
Elekes, 2010, Self-similar and self-affine sets: measure of the intersection of two copies, Ergodic Theory Dynam. Systems, 30, 399, 10.1017/S0143385709000121
Feng, 2009, On the structures of generating iterated function systems of Cantor sets, Adv. Math., 222, 1964, 10.1016/j.aim.2009.06.022
Ferrante, 1975, A decision procedure for the first order theory of real addition with order, SIAM J. Comput., 4, 69, 10.1137/0204006
Frougny, 1992, Representations of numbers and finite automata, Math. Syst. Theory, 25, 37, 10.1007/BF01368783
Frougny, 2010, Number representation and finite automata, vol. 135, 34
Hutchinson, 1981, Fractals and self-similarity, Indiana Univ. Math. J., 30, 713, 10.1512/iumj.1981.30.30055
Löding, 2001, Efficient minimization of deterministic weak ω-automata, Inform. Process. Lett., 79, 105, 10.1016/S0020-0190(00)00183-6
Lothaire, 2002, Algebraic Combinatorics on Words, vol. 90
Parry, 1960, On the β-expansions of real numbers, Acta Math. Acad. Sci. Hung., 11, 401, 10.1007/BF02020954
Pin, 2004
Pisot, 1946, Répartition (mod1) des puissances successives des nombres réels, Comment. Math. Helv., 19, 153, 10.1007/BF02565954
Rauzy, 1982, Nombres algébriques et substitutions, Bull. Soc. Math. France, 110, 147, 10.24033/bsmf.1957
Sirvent, 2002, Self-affine tiling via substitution dynamical systems and Rauzy fractals, Pacific J. Math., 206, 465, 10.2140/pjm.2002.206.465